Exact penalization of mathematical programs with equilibrium constraints

被引:103
作者
Scholtes, S [1 ]
Stöhr, M
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Judge Inst Management Studies, Cambridge CB2 1PZ, England
[3] Univ Karlsruhe, Inst Stat & Math Wirtschaftstheorie, D-76128 Karlsruhe, Germany
关键词
bilevel program; error bound; exact penalization; l(1) penalty function; Mangasarian-Fromovitz constraint qualification; mathematical program with equilibrium constraints (MPEC); piecewise smooth; sequential quadratic programming; trust region;
D O I
10.1137/S0363012996306121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study theoretical and computational aspects of an exact penalization approach to mathematical programs with equilibrium constraints (MPECs). In the first part, we prove that a Mangasarian-Fromovitz-type condition ensures the existence of a stable local error bound at the root of a real-valued nonnegative piecewise smooth function. A specification to nonsmooth formulations of equilibrium constraints, e.g., complementarity conditions or normal equations, provides conditions which guarantee the existence of a nonsmooth exact penalty function for MPECs. In the second part, we study a trust region minimization method for a class of composite nonsmooth functions which comprises exact penalty functions arising from MPECs. We prove a global convergence result for the general method and incorporate a penalty update rule. A further specification results in an SQP trust region method for MPECs based on an l(1) penalty function.
引用
收藏
页码:617 / 652
页数:36
相关论文
共 48 条
[1]  
ANANDALINGAM G, 1992, ANN OPER RES, V34
[2]  
[Anonymous], INTRO PIECEWISE DIFF
[3]  
[Anonymous], COMPUTATIONAL TECHNI
[4]   AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION [J].
BURKE, JV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (04) :968-998
[5]   PIECEWISE CK FUNCTIONS IN NONSMOOTH ANALYSIS [J].
CHANEY, RW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (07) :649-660
[6]  
Chen Y., 1995, Optimization, V32, P193, DOI 10.1080/02331939508844048
[7]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[8]  
Dedieu J. P., 1992, Optimization, V26, P27, DOI 10.1080/02331939208843840
[9]   A UNIFIED APPROACH TO GLOBAL CONVERGENCE OF TRUST REGION METHODS FOR NONSMOOTH OPTIMIZATION [J].
DENNIS, JE ;
LI, SBB ;
TAPIA, RA .
MATHEMATICAL PROGRAMMING, 1995, 68 (03) :319-346
[10]  
EREMIN I., 1966, SOV MATH DOKL, V8, P459