Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal

被引:105
作者
Decuypere, S
Rijal, S
Yardley, V
De Doncker, S
Laurent, T
Khanal, B
Chappuis, F
Dujardin, JC
机构
[1] Prins Leopold Inst Trop Geneeskunde, Unit Mol Parasitol, Dept Parasitol, B-2000 Antwerp, Belgium
[2] Univ Antwerp, Dept Biomed Sci, B-2080 Antwerp, Belgium
[3] BP Koirala Inst Hlth Sci, Dharan, Nepal
[4] Univ London London Sch Hyg & Trop Med, Dept Infect & Trop Dis, London WC1E 7HT, England
[5] Hop Univ Geneve, Dept Community Med, Travel & Migrat Med Unit, Geneva, Switzerland
关键词
D O I
10.1128/AAC.49.11.4616-4621.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Control of visceral leishmaniasis (VL) is being challenged by the emergence of natural resistance against the first line of treatment, pentavalent antimonials [Sb(V)]. An insight into the mechanism of natural Sb(V) resistance is required for the development of efficient strategies to monitor the emergence and spreading of Sb(V) resistance in countries where VL is endemic. In this work, we have focused on the mechanism of natural Sb(V) resistance emerging in Nepal, a site where anthroponotic VL is endemic. Based on the current knowledge of Sb(V) metabolism and of the in vitro trivalent antimonial [Sb(Ill)] models of resistance to Leishmania spp., we selected nine genes for a comparative transcriptomic study on natural Sb(V)-resistant and -sensitive Leishmania donovani isolates. Differential gene expression patterns were observed for the genes coding for 2-thiol biosynthetic enzymes, gamma-glutamylcysteine synthetase (GCS) and ornithine decarboxylase (ODC), and for the Sb(III) transport protein aquaglyceroporin 1 (AQP1). The results indicate that the mechanism for natural Sb(V) resistance partially differs from the mechanism reported for in vitro Sb(III) resistance. More specifically, we hypothesize that natural Sb(V) resistance results from (i) a changed thiol metabolism, possibly resulting in inhibition of Sb(V) activation in amastigotes, and (ii) decreased uptake of the active drug Sb(III) by amastigotes.
引用
收藏
页码:4616 / 4621
页数:6
相关论文
共 36 条
[1]  
[Anonymous], BIOCHEM J
[2]   BIOCHEMICAL-MECHANISMS OF THE ANTILEISHMANIAL ACTIVITY OF SODIUM STIBOGLUCONATE [J].
BERMAN, JD ;
WADDELL, D ;
HANSON, BD .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1985, 27 (06) :916-920
[3]  
BERMAN JD, 1987, BIOCHEM PHARMACOL, V36, P197, DOI 10.1016/0006-2952(87)90689-7
[4]   Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites [J].
Brochu, C ;
Wang, JY ;
Roy, G ;
Messier, N ;
Wang, XY ;
Saravia, NG ;
Ouellette, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (10) :3073-3079
[5]   Life without transcriptional control? From fly to man and back again [J].
Clayton, CE .
EMBO JOURNAL, 2002, 21 (08) :1881-1888
[6]   Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major [J].
Coelho, AC ;
Beverley, SM ;
Cotrim, PC .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2003, 130 (02) :83-90
[7]   Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1 [J].
Denton, H ;
McGregor, JC ;
Coombs, GH .
BIOCHEMICAL JOURNAL, 2004, 381 (02) :405-412
[8]   Leishmaniasis - Public health aspects and control [J].
Desjeux, P .
CLINICS IN DERMATOLOGY, 1996, 14 (05) :417-423
[9]   An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae [J].
Dey, S ;
Ouellette, M ;
Lightbody, J ;
Papadopoulou, B ;
Rosen, BP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (05) :2192-2197
[10]   Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes [J].
El Fadili, K ;
Messier, N ;
Leprohon, P ;
Roy, G ;
Guimond, C ;
Trudel, N ;
Saravia, NG ;
Pavadopoulou, B ;
Légaré, D ;
Oullette, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2005, 49 (05) :1988-1993