Mixing weighted values of non-atomic games

被引:2
作者
Santos, JC [1 ]
Zarzuelo, JM [1 ]
机构
[1] Univ Basque Country, Dept Econ Aplicada 1, Bilbao 48015, Spain
关键词
non-atomic games; Aumann-Shapley value; weighted values;
D O I
10.1007/s001820050076
中图分类号
F [经济];
学科分类号
02 ;
摘要
Weighted values of non-atomic games were introduced by Hart and Monderer (1997). They study these values by using two approaches: the potential approach and the asymptotic approach. In this study we develop the random order approach (the mixing value, Aumann and Shapley, 1974) to weighted values and prove that these values coincide with the asymptotic weighted values of Hart and Monderer in pNA.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 7 条
[1]  
Aumann R. J., 1974, Values of Non-Atomic Games
[2]  
Halmos Paul R., 1950, Measure Theory, DOI DOI 10.1007/978-1-4684-9440-2
[3]   Potentials and weighted values of nonatomic games [J].
Hart, S ;
Monderer, D .
MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) :619-630
[4]   POTENTIAL, VALUE, AND CONSISTENCY [J].
HART, S ;
MASCOLELL, A .
ECONOMETRICA, 1989, 57 (03) :589-614
[5]  
KALAI E, 1988, SHAPLEY VALUE
[6]   VALUES OF GAMES WITH A CONTINUUM OF PLAYERS [J].
KANNAI, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (01) :54-&
[7]  
MONDERER D, 1988, SHAPLEY VALUE