Critical phase in nonconserving zero-range processes and rewiring networks

被引:22
作者
Angel, AG
Evans, MR
Levine, E
Mukamel, D
机构
[1] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[3] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevE.72.046132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Zero-range processes, in which particles hop between sites on a lattice, are closely related to rewiring networks, in which rewiring of links between nodes takes place. Both systems exhibit a condensation transition for appropriate choices of the dynamical rules. The transition results in a macroscopically occupied site for zero-range processes and a macroscopically connected node for networks. Criticality, characterized by a scale-free distribution, is obtained only at the transition point. This is in contrast with the widespread scale-free complex networks. Here we propose a generalization of these models whereby criticality is obtained throughout an entire phase, and the scale-free distribution does not depend on any fine-tuned parameter.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
ANGEL AS, UNPUB
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]  
Bak P., 1996, NATURE WORKS
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Condensation in the Backgammon model [J].
Bialas, P ;
Burda, Z ;
Johnston, D .
NUCLEAR PHYSICS B, 1997, 493 (03) :505-516
[7]   Bose-Einstein condensation in complex networks [J].
Bianconi, G ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5632-5635
[8]   Cut-offs and finite size effects in scale-free networks [J].
Boguña, M ;
Pastor-Satorras, R ;
Vespignani, A .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :205-209
[9]   Wealth condensation in pareto macroeconomics [J].
Burda, Z. ;
Johnston, D. ;
Jurkiewicz, J. ;
Kamiński, M. ;
Nowak, M.A. ;
Papp, G. ;
Zahed, I. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (02) :1-026102
[10]   Paths to self-organized criticality [J].
Dickman, R ;
Muñoz, MA ;
Vespignani, A ;
Zapperi, S .
BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) :27-41