Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes

被引:76
作者
Takano, A [1 ]
Haruta, T [1 ]
Iwata, M [1 ]
Usui, I [1 ]
Uno, T [1 ]
Kawahara, J [1 ]
Ueno, E [1 ]
Sasaoka, T [1 ]
Kobayashi, M [1 ]
机构
[1] Toyama Med & Pharmaceut Univ, Dept Med 1, Sugitani, Toyama 9300194, Japan
关键词
D O I
10.2337/diabetes.50.8.1891
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Growth hormone (GH) is well known to induce in vivo insulin resistance. However, the molecular mechanism of GH-induced cellular insulin resistance is largely unknown. In this study, we demonstrated that chronic GH treatment of differentiated 3T3-L1 adipocytes reduces insulin-stimulated 2-deoxyglucose (DOG) uptake and activation of Akt (also known as protein kinase B), both of which are downstream effects of phosphatidylinositol (PI) 3-kinase, despite enhanced tyrosine phosphorylation of insulin receptor substrate (IRS)-1, association of IRS-1 with the p85 subunit of PI 3-kinase, and IRS-1-associated PI 3-kinase activity. In contrast, chronic GH treatment did not affect 2-DOG uptake and Akt activation induced by overexpression of a membrane-targeted form of the p110 subunit of PI 3-kinase (p110(CAAX)) or Akt activation stimulated by platelet-derived growth factor. Fractionation studies indicated that chronic GH treatment reduces insulin-stimulated translocation of Akt from the cytosol to the plasma membrane. Interestingly, chronic GH treatment increased insulin-stimulated association of IRS-1 with p85 and IRS-1-associated PI 3-kinase activity preferentially in the cytosol. These results indicate that cellular insulin resistance induced by chronic GH treatment in 3T3-L1 adipocytes is caused by uncoupling between activation of PI 3-kinase and its downstream signals, which is specific to the insulin-stimulated PI 3-kinase pathway. This effect of GH might result from the altered subcellular distribution of IRS-1-associated PI 3-kinase.
引用
收藏
页码:1891 / 1900
页数:10
相关论文
共 67 条
[1]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[2]   3 Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro [J].
Alessi, DR ;
Kozlowski, MT ;
Weng, QP ;
Morrice, N ;
Avruch, J .
CURRENT BIOLOGY, 1998, 8 (02) :69-81
[3]   Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B [J].
Anderson, KE ;
Coadwell, J ;
Stephens, LR ;
Hawkins, PT .
CURRENT BIOLOGY, 1998, 8 (12) :684-691
[4]   Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors [J].
Andjelkovic, M ;
Jakubowicz, T ;
Cron, P ;
Ming, XF ;
Han, JW ;
Hemmings, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5699-5704
[5]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[6]   GROWTH-HORMONE, INTERFERON-GAMMA, AND LEUKEMIA INHIBITORY FACTOR PROMOTED TYROSYL PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 [J].
ARGETSINGER, LS ;
HSU, GW ;
MYERS, MG ;
BILLESTRUP, N ;
WHITE, MF ;
CARTERSU, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14685-14692
[7]   IDENTIFICATION OF JAK2 AS A GROWTH-HORMONE RECEPTOR-ASSOCIATED TYROSINE KINASE [J].
ARGETSINGER, LS ;
CAMPBELL, GS ;
YANG, XN ;
WITTHUHN, BA ;
SILVENNOINEN, O ;
IHLE, JN ;
CARTERSU, C .
CELL, 1993, 74 (02) :237-244
[8]   Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling [J].
Argetsinger, LS ;
Norstedt, G ;
Billestrup, N ;
White, MF ;
CarterSu, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :29415-29421
[9]   The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells [J].
Brady, MJ ;
Bourbonais, FJ ;
Saltiel, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14063-14066
[10]   PATHOGENESIS OF THE DAWN PHENOMENON IN PATIENTS WITH INSULIN-DEPENDENT DIABETES-MELLITUS - ACCELERATED GLUCOSE-PRODUCTION AND IMPAIRED GLUCOSE-UTILIZATION DUE TO NOCTURNAL SURGES IN GROWTH-HORMONE SECRETION [J].
CAMPBELL, PJ ;
BOLLI, GB ;
CRYER, PE ;
GERICH, JE .
NEW ENGLAND JOURNAL OF MEDICINE, 1985, 312 (23) :1473-1479