Scaling of the sampling period in nonlinear system identification

被引:13
作者
Wigren, T [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
来源
ACC: Proceedings of the 2005 American Control Conference, Vols 1-7 | 2005年
关键词
D O I
10.1109/ACC.2005.1470817
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a scaling algorithm for system identification, based on a nonlinear black box differential equation model. The model is discretized by an Euler forward numerical integration scheme. A scale factor is applied to the explicitly appearing sampling period, when iterating the discrete time state space model and the corresponding gradient recursion. The result is an exponential scaling of the state components of the model, and a scaling of the estimated parameter vector. The original parameter vector can be explicitly calculated from the scaled parameter vector using a diagonal matrix that is a function only of the scale factor. A new analysis of the effect of scaling on the Hessian, shows how the same diagonal matrix affects its eigenvalue distribution. A simulation study illustrates the beneficial effects on e.g. the condition number that can be obtained with the algorithm.
引用
收藏
页码:5058 / 5065
页数:8
相关论文
共 15 条
[1]   Drum-boiler dynamics [J].
Åström, KJ ;
Bell, RD .
AUTOMATICA, 2000, 36 (03) :363-378
[2]   IDENTIFICATION OF SYSTEMS CONTAINING LINEAR DYNAMIC AND STATIC NON-LINEAR ELEMENTS [J].
BILLINGS, SA ;
FAKHOURI, SY .
AUTOMATICA, 1982, 18 (01) :15-26
[3]   A CASE-STUDY OF GRAY BOX IDENTIFICATION [J].
BOHLIN, T .
AUTOMATICA, 1994, 30 (02) :307-318
[4]  
BRUS L, 2005, UNPUB CCA 2005
[5]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[6]  
Fairley P., 2004, IEEE SPECTRUM, V41, P16
[7]  
FUNKQVIST J, 1994, P SYSID 1994 COP DEN
[8]   PERFORMANCE ANALYSIS OF GENERAL TRACKING ALGORITHMS [J].
GUO, L ;
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (08) :1388-1402
[9]  
Ljung L., 1997, P IFAC S ADV CONTR C, P1
[10]  
Luenberger DG., 2015, LINEAR NONLINEAR PRO