Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: The lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100

被引:77
作者
Daubaras, DL [1 ]
Saido, K [1 ]
Chakrabarty, AM [1 ]
机构
[1] UNIV ILLINOIS, COLL MED, DEPT MICROBIOL & IMMUNOL MC790, CHICAGO, IL 60612 USA
关键词
D O I
10.1128/AEM.62.11.4276-4279.1996
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The enzyme hydroxyquinol 1,2-dioxygenase, which catalyzes ortho cleavage of hydroxyquinol (1,2,4-trihydroxybenzene) to produce maleylacetate, was purified from Escherichia coli cells containing the tftH gene from Burkholderia cepacia AC1100. Reduction of the double bond in maleylacetate is catalyzed by the enzyme maleylacetate reductase, which was also purified from E, coli cells, these cells containing the tftE gene from B. cepacia AC1100. The two enzymes together catalyzed the conversion of hydroxyquinol to 3-oxoadipate, The purified hydroxyquinol 1,2-dioxygenase was specific for hydroxyquinol and was not able to use catechol, tetrahydroxybenzene, 6-chlorohydroxyquinol, or 5-chlorohydroxyquinol as its substrate, The native molecular mass of hydroxyquinol 1,2-dioxygenase was 68 kDa, and the subunit size of the protein was 36 kDa, suggesting a dimeric protein of identical subunits.
引用
收藏
页码:4276 / 4279
页数:4
相关论文
共 33 条
[1]   COMPLETE DECHLORINATION OF TETRACHLOROHYDROQUINONE BY CELL-EXTRACTS OF PENTACHLOROPHENOL-INDUCED RHODOCOCCUS-CHLOROPHENOLICUS [J].
APAJALAHTI, JHA ;
SALKINOJASALONEN, MS .
JOURNAL OF BACTERIOLOGY, 1987, 169 (11) :5125-5130
[2]   DETOXIFICATION MECHANISMS FOR 1,2,4-BENZENETRIOL EMPLOYED BY A RHODOCOCCUS SP BPG-8 [J].
ARMSTRONG, S ;
PATEL, TR ;
WHALEN, M .
ARCHIVES OF MICROBIOLOGY, 1993, 159 (02) :136-140
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   METABOLISM OF RESORCINYLIC COMPOUNDS BY BACTERIA - ALTERNATIVE PATHWAYS FOR RESORCINOL CATABOLISM IN PSEUDOMONAS-PUTIDA [J].
CHAPMAN, PJ ;
RIBBONS, DW .
JOURNAL OF BACTERIOLOGY, 1976, 125 (03) :985-998
[5]  
CHAPMAN PJ, 1987, 8TH ANN M SOC ENV TO, P127
[6]   PLASMID SPECIFYING TOTAL DEGRADATION OF 3-CHLOROBENZOATE BY A MODIFIED ORTHO-PATHWAY [J].
CHATTERJEE, DK ;
KELLOGG, ST ;
HAMADA, S ;
CHAKRABARTY, AM .
JOURNAL OF BACTERIOLOGY, 1981, 146 (02) :639-646
[7]   BIODEGRADATION OF HALOGENATED ORGANIC-COMPOUNDS [J].
CHAUDHRY, GR ;
CHAPALAMADUGU, S .
MICROBIOLOGICAL REVIEWS, 1991, 55 (01) :59-79
[8]   NUCLEOTIDE-SEQUENCE AND FUNCTIONAL-ANALYSIS OF THE GENES ENCODING 2,4,5-TRICHLOROPHENOXYACETIC ACID OXYGENASE IN PSEUDOMONAS-CEPACIA AC1100 [J].
DANGANAN, CE ;
YE, RW ;
DAUBARAS, DL ;
XUN, LI ;
CHAKRABARTY, AM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (11) :4100-4106
[9]   SEQUENCE-ANALYSIS OF A GENE-CLUSTER INVOLVED IN METABOLISM OF 2,4,5-TRICHLOROPHENOXYACETIC ACID BY BURKHOLDERIA-CEPACIA AC1100 [J].
DAUBARAS, DL ;
HERSHBERGER, CD ;
KITANO, K ;
CHAKRABARTY, AM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (04) :1279-1289
[10]   TRANSPOSON MUTAGENESIS AND CLONING ANALYSIS OF THE PATHWAYS FOR DEGRADATION OF 2,4-DICHLOROPHENOXYACETIC ACID AND 3-CHLOROBENZOATE IN ALCALIGENES-EUTROPHUS JMP134(PJP4) [J].
DON, RH ;
WEIGHTMAN, AJ ;
KNACKMUSS, HJ ;
TIMMIS, KN .
JOURNAL OF BACTERIOLOGY, 1985, 161 (01) :85-90