Sampling algorithms for estimating the mean of bounded random variables

被引:32
作者
Cheng, J [1 ]
机构
[1] Univ Pittsburgh, Sch Informat Sci, Decis Syst Lab, Pittsburgh, PA 15260 USA
关键词
algorithm; sampling; Monte Carlo estimation; confidence intervals;
D O I
10.1007/s001800100049
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show two distribution-independent algorithms to estimate the mean of bounded random variables, one with the knowledge of variance, the other without. These algorithms guarantee that the estimate is within the desired precision with an error probability less than or equal to the requirement. Some simplified stopping rules are also given.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 13 条
[2]  
BERNSTEIN SN, 1927, THEORY PROBABILITY
[3]   LOWER BOUNDS FOR SAMPLING ALGORITHMS FOR ESTIMATING THE AVERAGE [J].
CANETTI, R ;
EVEN, G ;
GOLDREICH, O .
INFORMATION PROCESSING LETTERS, 1995, 53 (01) :17-25
[4]   AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks [J].
Cheng, J ;
Druzdzel, MJ .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 13 :155-188
[5]   An optimal algorithm for Monte Carlo estimation [J].
Dagum, P ;
Karp, R ;
Luby, M ;
Ross, S .
SIAM JOURNAL ON COMPUTING, 2000, 29 (05) :1484-1496
[6]   APPROXIMATING PROBABILISTIC INFERENCE IN BAYESIAN BELIEF NETWORKS [J].
DAGUM, P ;
CHAVEZ, RM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (03) :246-255
[7]   A BAYESIAN-ANALYSIS OF SIMULATION ALGORITHMS FOR INFERENCE IN BELIEF NETWORKS [J].
DAGUM, P ;
HORVITZ, E .
NETWORKS, 1993, 23 (05) :499-516
[8]   An optimal approximation algorithm for Bayesian inference [J].
Dagum, P ;
Luby, M .
ARTIFICIAL INTELLIGENCE, 1997, 93 (1-2) :1-27
[10]   A MONTE-CARLO ALGORITHM FOR ESTIMATING THE PERMANENT [J].
KARMARKAR, N ;
KARP, R ;
LIPTON, R ;
LOVASZ, L ;
LUBY, M .
SIAM JOURNAL ON COMPUTING, 1993, 22 (02) :284-293