A new IIR-type digital fractional order differentiator

被引:204
作者
Chen, YQ
Vinagre, BM
机构
[1] Utah State Univ, Coll Engn, Dept Elect & Comp Engn, Ctr Self Org & Intelligent Sys,UMC 4160, Logan, UT 84322 USA
[2] Univ Extremadura, Sch Ind Engn, Dept Elect & Electromech Engn, E-06071 Badajoz, Spain
关键词
digital fractional order differentiator (DFOD); digital differentiators; digital integrators; Simpson rule; Trapezoidal rule; continued fraction expansion (CFE); IIR filter;
D O I
10.1016/S0165-1684(03)00188-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new infinite impulse response (IIR)-type digital fractional order differentiator (DFOD) is proposed by using a new family of first-order digital differentiators expressed in the second-order IIR filter form. The integer first-order digital differentiators are obtained by the stable inversion of the weighted sum of Simpson integration rule and the trapezoidal integration rule. The distinguishing point of the proposed DFOD lies in an additional tuning knob to compromise the high-frequency approximation accuracy. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2359 / 2365
页数:7
相关论文
共 29 条
[1]   Filling the gap between the bilinear and the backward-difference transforms: An interactive design approach [J].
AlAlaoui, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1997, 34 (04) :331-337
[2]   NOVEL DIGITAL INTEGRATOR AND DIFFERENTIATOR [J].
ALALAOUI, MA .
ELECTRONICS LETTERS, 1993, 29 (04) :376-378
[3]   A CLASS OF 2ND-ORDER INTEGRATORS AND LOW-PASS DIFFERENTIATORS [J].
ALALAOUI, MA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (04) :220-223
[4]  
[Anonymous], P EUR CONTR C ECC200
[5]  
[Anonymous], 1999, La commande CRONE: du scalaire au multivariable
[6]  
[Anonymous], 1994, US Patent, Patent No. [Lune, B.J., US5371, 670, 5371670]
[7]  
AXTGELL M, 1990, P IEEE 1990 NAT AER, P563
[8]  
Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
[9]   DISCRETIZED FRACTIONAL CALCULUS [J].
LUBICH, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :704-719
[10]  
Machado J. T., Syst. Anal. Model. Simul, V27, P107