Regulated hyperaccumulation of presenilin-1 and the "γ-secretase" complex -: Evidence for differential intramembranous processing of transmembrane substrates

被引:95
作者
Kim, SH [1 ]
Ikeuchi, T [1 ]
Yu, CJ [1 ]
Sisodia, SS [1 ]
机构
[1] Univ Chicago, Dept Neurobiol Pharmacol & Physiol, Chicago, IL 60637 USA
关键词
D O I
10.1074/jbc.M305834200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intramembranous "gamma-secretase" processing of beta-amyloid precursor protein (APP) and other transmembrane proteins, including Notch, is mediated by a macromolecular complex consisting of presenilins (PSs), nicastrin (NCT), APH-1, and PEN-2. We now demonstrate that in cells coexpressing PS1, APH-1, and NCT, full-length PS1 accumulates to high levels and is fairly stable. Upon expression of PEN-2, the levels of PS1 holoprotein are significantly reduced, commensurate with an elevation in levels of PS1 fragments. These findings suggest that APH-1 and NCT are necessary for stabilization of full-length PS1 and that PEN-2 is critical for the proteolysis of stabilized PS1. In N2a and 293 cell lines that stably overexpress PS1, APH-1, NCT, and PEN-2, PS1 fragment levels are elevated by up to 10-fold over endogenous levels. In these cells, we find a marked accumulation of the APP-CTFgamma (AICD) fragment and a concomitant reduction in levels of both APP-CTFbeta and CTFalpha. Moreover, the production of the gamma-secretase-generated Notch S3/NICD derivative is modestly elevated. However, we failed to observe a corresponding increase in levels of secreted Abeta peptides in the medium of these cells. These results lead us to conclude that, although the PS1, APH-1, NCT, and PEN-2 are essential for gamma-secretase activity, the proteolysis of APP-CTF and Notch S2/NEXT are differentially regulated and require the activity of additional cofactors that promote production of AICD, NICD, and Abeta.
引用
收藏
页码:33992 / 34002
页数:11
相关论文
共 63 条
[1]   Aspartate mutations in presenilin and γ-secretase inhibitors both impair Notch1 proteolysis and nuclear translocation with relative preservation of Notch1 signaling [J].
Berezovska, O ;
Jack, C ;
McLean, P ;
Aster, JC ;
Hicks, C ;
Xia, WM ;
Wolfe, MS ;
Kimberly, WT ;
Weinmaster, G ;
Selkoe, DJ ;
Hyman, BT .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (02) :583-593
[2]   Mutations at the P1′ position of Notch1 decrease intracellular domain stability rather than cleavage by γ-secretase [J].
Blat, Y ;
Meredith, JE ;
Wang, Q ;
Bradley, JD ;
Thompson, LA ;
Olson, RE ;
Stern, AM ;
Seiffert, D .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 299 (04) :569-573
[3]   The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex [J].
Capell, A ;
Grünberg, J ;
Pesold, B ;
Diehlmann, A ;
Citron, M ;
Nixon, R ;
Beyreuther, K ;
Selkoe, DJ ;
Haass, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3205-3211
[4]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[5]   Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila [J].
Chung, HM ;
Struhl, G .
NATURE CELL BIOLOGY, 2001, 3 (12) :1129-1132
[6]   A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain [J].
De Strooper, B ;
Annaert, W ;
Cupers, P ;
Saftig, P ;
Craessaerts, K ;
Mumm, JS ;
Schroeter, EH ;
Schrijvers, V ;
Wolfe, MS ;
Ray, WJ ;
Goate, A ;
Kopan, R .
NATURE, 1999, 398 (6727) :518-522
[7]   Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation [J].
Edbauer, D ;
Winkler, E ;
Haass, C ;
Steiner, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8666-8671
[8]   Reconstitution of γ-secretase activity [J].
Edbauer, D ;
Winkler, E ;
Regula, JT ;
Pesold, B ;
Steiner, H ;
Haass, C .
NATURE CELL BIOLOGY, 2003, 5 (05) :486-488
[9]   Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1 [J].
Esler, WP ;
Kimberly, WT ;
Ostaszewski, BL ;
Diehl, TS ;
Moore, CL ;
Tsai, JY ;
Rahmati, T ;
Xia, WM ;
Selkoe, DJ ;
Wolfe, MS .
NATURE CELL BIOLOGY, 2000, 2 (07) :428-434
[10]   Aspartyl protease inhibitor pepstatin binds to the presenilins of Alzheimer's disease [J].
Evin, G ;
Sharples, RA ;
Weidemann, A ;
Reinhard, FBM ;
Carbone, V ;
Culvenor, JG ;
Holsinger, RMD ;
Sernee, MF ;
Beyreuther, K ;
Masters, CL .
BIOCHEMISTRY, 2001, 40 (28) :8359-8368