Unsupervised joint alignment of complex images

被引:155
作者
Huang, Gary B. [1 ]
Jain, Vidit [1 ]
Learned-Miller, Erik [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
来源
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6 | 2007年
关键词
D O I
10.1109/iccv.2007.4408858
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many recognition algorithms depend on careful positioning of an object into a canonical pose, so the position of features relative to a fixed coordinate system can be examined. Currently, this positioning is done either manually or by training a class-specialized learning algorithm with samples of the class that have been hand-labeled with parts or poses. In this paper, we describe a novel method to achieve this positioning using poorly aligned examples of a class with no additional labeling. Given a set of unaligned examplars of a class, such as faces, we automatically build an alignment mechanism, without any additional labeling of parts or poses in the data set. Using this alignment mechanism, new members of the class, such as faces resulting from a face detector, can be precisely aligned for the recognition process. Our alignment method improves performance on a face recognition task, both over unaligned images and over images aligned with a face alignment algorithm specifically developed for and trained on hand-labeled face images. We also demonstrate its use on an entirely different class of objects (cars), again without providing any information about parts or pose to the learning algorithm.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 21 条
[1]  
[Anonymous], CVPR
[2]  
[Anonymous], CVPR
[3]  
[Anonymous], 2004, CVPR
[4]  
[Anonymous], P IEEE C COMP VIS PA
[5]  
[Anonymous], 1997, IEEE T PATTERN ANAL
[6]  
Berg T.L, 2004, NIPS
[7]  
COOTES TF, 1998, P 5 EUR C COMP VIS
[8]  
HU C, 2003, INT WORKSH ANAL MOD
[9]  
HUANG Y, 2004, P 6 INT C AUT FAC GE
[10]  
JAIN V, 2006, P BRIT MACH VIS C