A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis

被引:291
作者
Li, NC [1 ]
Martin, CR [1 ]
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
关键词
D O I
10.1149/1.1342167
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li-ion battery anodes derived from oxides of tin have recently received considerable interest because in principle they can store over twice as much Li as graphite. However, large volume changes occur when Li is inserted and removed from these Sn-based materials, and this causes internal damage to the electrode, resulting in loss of capacity and rechargability. We describe here a new nanostructured SnO2-based electrode that has extraordinary rate capabilities, can deliver very high capacities (e.g., >700 mAh g(-1) at 8 C rate), and still retain the ability to be discharged and recharged through as many as 1400 cycles. These electrodes, prepared via the template method, consist of monodisperse 110 nm diam SnO2 nanofibers protruding from a current-collector surface like the bristles of a brush. (C) 2001 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A164 / A170
页数:7
相关论文
共 29 条
[1]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[2]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[3]   Preparation and stability of template-synthesized metal nanorod sols in organic solvents [J].
Cepak, VM ;
Martin, CR .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9985-9990
[4]   Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes [J].
Che, G ;
Jirage, KB ;
Fisher, ER ;
Martin, CR ;
Yoneyama, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4296-4302
[5]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[6]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[7]   Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2943-2948
[8]   A 400 mAh/g aerogel-like V2O5 cathode for rechargeable lithium batteries [J].
Coustier, F ;
Passerini, S ;
Smyrl, WH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (05) :L73-L74
[9]   A general template-based method for the preparation of nanomaterials [J].
Hulteen, JC ;
Martin, CR .
JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (07) :1075-1087
[10]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397