A category theory approach to conceptual data modeling

被引:18
作者
Lippe, E
terHofstede, AHM
机构
[1] Computing Science Institute, Fac. of Mathematics and Informatics, University of Nijmegen, 6525 ED Nijmegen
来源
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS | 1996年 / 30卷 / 01期
关键词
D O I
10.1051/ita/1996300100311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a category theory semantics for conceptual data modeling. The conceptual data modeling technique used can be seen as a generalization of most existing conceptual data modeling techniques. It contains features such as specialization, generalization, and power types. The semantics uses only simple category theory constructs such as (co)limits and epi- and monomorphisms. Therefore, the semantics can be applied to a wide range of instance categories, it is not restricted to topoi or cartesian closed categories. By choosing appropriate instance categories, features such as missing values, multi-valued relations, and uncertainty can be added to conceptual data models.
引用
收藏
页码:31 / 79
页数:49
相关论文
共 34 条
[1]   IFO - A FORMAL SEMANTIC DATABASE MODEL [J].
ABITEBOUL, S ;
HULL, R .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 1987, 12 (04) :525-565
[2]  
Adamek Jiri, 1990, Pure and applied mathematics
[3]  
[Anonymous], THEORY RELATIONAL DA
[4]  
[Anonymous], IEEE COMPUTER
[5]   A TEMPORALLY ORIENTED DATA MODEL [J].
ARIAV, G .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 1986, 11 (04) :499-527
[6]  
AVISON DE, 1988, INFORMATION SYSTEMS
[7]  
Bachman C.W., 1969, ACM SIGMIS Database, V1, P4, DOI 10.1145/1017466.1017467
[8]  
Baclawski K., 1994, Mathematical Structures in Computer Science, V4, P147, DOI 10.1017/S0960129500000426
[9]  
Barr M., 1990, Category theory for computing science
[10]  
BARR M, 1986, CANAD MATH B, V24, P501