Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo

被引:43
作者
Ishizuka, S
Martin, K
Booth, C
Potten, CS
de Murcia, G
Bürkle, A
Kirkwood, TBL [1 ]
机构
[1] Newcastle Univ, Inst Ageing & Hlth, Sch Clin Med Sci Gerontol, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
[2] Christie Hosp NHS Trust, Paterson Inst Canc Res, CRC Epithelial Biol Grp, Manchester M20 4BX, Lancs, England
[3] Hokkaido Univ, Grad Sch Agr, Div Appl Biosci, Sapporo, Hokkaido 0608589, Japan
[4] Ecole Super Biotechnol Strasbourg, CEA, CNRS,Unite 9003, Lab Convent Avec, F-67400 Illkirch Graffenstaden, France
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1093/nar/gkg840
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme mediating the cellular response to DNA strand breaks. It plays a critical role in genomic stability and survival of proliferating cells in culture undergoing DNA damage. Intestinal epithelium is the most proliferative tissue in the mammalian body and its stem cells show extreme sensitivity to low-level genotoxic stress. We investigated the role of PARP-1 in the in vivo damage response of intestinal stem cells in crypts of PARP-1(-/-) and control mice following whole-body gamma-irradiation (1 Gy). In the PARP-1(-/-) mice there was a significant delay during the first 6 h in the transient p53 accumulation in stem cells whereas an increased number of cells were positive for p21(CIP1/WAF1). Either no or only marginal differences were noted in MDM2 expression, apoptosis, induction of or recovery from mitotic blockage, or inhibition of DNA synthesis. We further observed a dose-dependent reduction in crypt survival measured at 4 days post-irradiation in control mice, and this crypt-killing effect was significantly potentiated in PARP-1(-/-) mice. Our results thus establish that PARP-1 acts as a survival factor for intestinal stem cells in vivo and suggest a functional link with early p53 and p21(CIP1/WAF1) responses.
引用
收藏
页码:6198 / 6205
页数:8
相关论文
共 54 条
[1]   Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase [J].
Agarwal, ML ;
Agarwal, A ;
Taylor, WR ;
Wang, ZQ ;
Wagner, EF ;
Stark, GR .
ONCOGENE, 1997, 15 (09) :1035-1041
[2]   DNA excision repair and DNA damage-induced apoptosis are linked to poly(ADP-ribosyl)ation but have different requirements for p53 [J].
Beneke, R ;
Geisen, C ;
Zevnik, B ;
Bauch, T ;
Müller, WU ;
Küpper, JH ;
Möröy, T .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (18) :6695-6703
[3]   IDENTIFICATION OF MINIMAL SIZE REQUIREMENTS OF DNA FOR ACTIVATION OF POLY(ADP-RIBOSE) POLYMERASE [J].
BERGER, NA ;
PETZOLD, SJ .
BIOCHEMISTRY, 1985, 24 (16) :4352-4355
[4]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[5]   Physiology and pathophysiology of poly(ADP-ribosyl)ation [J].
Bürkle, A .
BIOESSAYS, 2001, 23 (09) :795-806
[6]   INCREASED POLY(ADP-RIBOSYL)ATION IN INTACT-CELLS BY CISPLATIN TREATMENT [J].
BURKLE, A ;
CHEN, G ;
KUPPER, JH ;
GRUBE, K ;
ZELLER, WJ .
CARCINOGENESIS, 1993, 14 (04) :559-561
[7]  
DelSal G, 1996, ONCOGENE, V12, P177
[8]   Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells [J].
deMurcia, JM ;
Niedergang, C ;
Trucco, C ;
Ricoul, M ;
Dutrillaux, B ;
Mark, M ;
Oliver, FJ ;
Masson, M ;
Dierich, A ;
LeMeur, M ;
Walztinger, C ;
Chambon, P ;
deMurcia, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7303-7307
[9]   P53-DEPENDENT INHIBITION OF CYCLIN-DEPENDENT KINASE-ACTIVITIES IN HUMAN FIBROBLASTS DURING RADIATION-INDUCED G1 ARREST [J].
DULIC, V ;
KAUFMANN, WK ;
WILSON, SJ ;
TLSTY, TD ;
LEES, E ;
HARPER, JW ;
ELLEDGE, SJ ;
REED, SI .
CELL, 1994, 76 (06) :1013-1023
[10]   Transcriptional regulation of the p21(WAF1/ClP1) gene [J].
Gartel, AL ;
Tyner, AL .
EXPERIMENTAL CELL RESEARCH, 1999, 246 (02) :280-289