Synthesis and properties of colloidal heteronanocrystals

被引:570
作者
Donega, Celso de Mello [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CC Utrecht, Netherlands
关键词
CDSE QUANTUM DOTS; SPONTANEOUS EMISSION RATE; PERMANENT DIPOLE-MOMENT; SINGLE-STEP SYNTHESIS; ONE-POT SYNTHESIS; GROUP-II-VI; OPTICAL-PROPERTIES; SHAPE CONTROL; SURFACE-CHEMISTRY; CATION-EXCHANGE;
D O I
10.1039/c0cs00055h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal heteronanocrystals (HNCs) can be regarded as solution-grown inorganic-organic hybrid nanomaterials, since they consist of inorganic nanoparticles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures provides great flexibility in engineering their physical and chemical properties. The inorganic particles are heterostructured, i.e. they comprise two (or more) different materials joined together, what gives them remarkable and unique properties that can be controlled by the composition, size and shape of each component of the HNC. The interaction between the inorganic component and the organic ligand molecules allows the size and shape of the HNCs to be controlled and gives rise to novel properties. Moreover, the organic surfactant layer opens up the possibility of surface chemistry manipulation, making it possible to tailor a number of properties. These features have turned colloidal HNCs into promising materials for a number of applications, spurring a growing interest on the investigation of their preparation and properties. This critical review provides an overview of recent developments in this rapidly expanding field, with emphasis on semiconductor HNCs (e.g., quantum dots and quantum rods). In addition to defining the state of the art and highlighting the key issues in the field, this review addresses the fundamental physical and chemical principles needed to understand the properties and preparation of colloidal HNCs (283 references).
引用
收藏
页码:1512 / 1546
页数:35
相关论文
共 284 条
[1]   Probing in situ the nucleation and growth of gold nanoparticles by small-angle x-ray scattering [J].
Abecassis, Benjamin ;
Testard, Fabienne ;
Spalla, Olivier ;
Barboux, Philippe .
NANO LETTERS, 2007, 7 (06) :1723-1727
[2]   Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents: Solvent's role in evolution of the optical and structural properties [J].
Al-Salim, Najeh ;
Young, Aidan G. ;
Tilley, Richard D. ;
McQuillan, A. James ;
Xia, James .
CHEMISTRY OF MATERIALS, 2007, 19 (21) :5185-5193
[3]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[4]  
Allen P. M., 2010, ANGEW CHEM, V122, P772, DOI 10.1002/ange.200905632
[5]   Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures [J].
Amirav, Lilac ;
Alivisatos, A. Paul .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (07) :1051-1054
[6]   Single-step synthesis of quantum dots with chemical composition gradients [J].
Bae, Wan Ki ;
Char, Kookheon ;
Hur, Hyuck ;
Lee, Seonghoon .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :531-539
[7]   Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size [J].
Bailey, RE ;
Nie, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :7100-7106
[8]   ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties [J].
Bang, Jiwon ;
Park, Juwon ;
Lee, Ji Hwang ;
Won, Nayoun ;
Nam, Jutaek ;
Lim, Jongwoo ;
Chang, Byoung Yong ;
Lee, Hyo Joong ;
Chon, Bonghwan ;
Shin, Junghan ;
Park, Jae Byung ;
Choi, Jong Hwa ;
Cho, Kilwon ;
Park, Su Moon ;
Joo, Taiha ;
Kim, Sungjee .
CHEMISTRY OF MATERIALS, 2010, 22 (01) :233-240
[9]   Tunneling and optical spectroscopy of semiconductor nanocrystals [J].
Banin, U ;
Millo, O .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2003, 54 :465-492
[10]   Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots [J].
Beaulac, Remi ;
Archer, Paul I. ;
van Rijssel, Jos ;
Meijerink, Andries ;
Gamelin, Daniel R. .
NANO LETTERS, 2008, 8 (09) :2949-2953