Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping

被引:198
作者
Driscoll, TA
机构
[1] Center for Applied Mathematics, Cornell University, Ithaca
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1996年 / 22卷 / 02期
关键词
numerical conformal mapping; Schwarz-Christoffel transformation;
D O I
10.1145/229473.229475
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Schwarz-Christoffel transformation and its variations yield formulas for conformal maps from standard regions to the interiors or exteriors of possibly unbounded polygons. Computations involving these maps generally require a computer; and although the numerical aspects of these transformations have been studied, there are few software implementations that are widely available and suited for general use. The Schwarz-Christoffel Toolbox for MATLAB is a new implementation of Schwarz-Christoffel formulas for maps from the disk, half-plane, strip, and rectangle domains to polygon interiors, and from the disk to polygon exteriors. The toolbox, written entirely in the MATLAB script language, exploits the high-level functions, interactive environment, visualization; tools, and graphical user interface elements supplied by current versions of MATLAB, and is suitable for use both as a standalone tool and as a library for applications written in MATLAB, Fortran, or C. Several examples and simple applications are presented to demonstrate the toolbox's capabilities.
引用
收藏
页码:168 / 186
页数:19
相关论文
共 24 条
[1]  
DAPPEN H, 1988, THESIS ETH ZURICH
[2]  
DAVIS RT, 1979, P 4 AIAA COMP FLUID, P1
[3]   NUMERICAL CONFORMAL MAPPING METHODS FOR EXTERIOR REGIONS WITH CORNERS [J].
DELILLO, TK ;
ELCRAT, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) :199-208
[4]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[5]   SCHWARZ-CHRISTOFFEL MAPPINGS - A GENERAL-APPROACH [J].
FLORYAN, JM ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 72 (02) :347-371
[7]   ISOSPECTRAL PLANE DOMAINS AND SURFACES VIA RIEMANNIAN ORBIFOLDS [J].
GORDON, C ;
WEBB, D ;
WOLPERT, S .
INVENTIONES MATHEMATICAE, 1992, 110 (01) :1-22
[8]  
HENRICI P, 1974, APPLIED COMPUTATIONA, V1
[9]  
HOEKSTRA M, 1986, NUMERICAL GRID GENER
[10]  
HOUGH DM, 1990, USERS GUIDE CONFPACK, P90