Locally optimal heuristic for modularity maximization of networks

被引:36
作者
Cafieri, Sonia [1 ]
Hansen, Pierre [2 ]
Liberti, Leo [3 ]
机构
[1] Ecole Natl Aviat Civile, Lab MAIA, F-31055 Toulouse, France
[2] GERAD & HEC Montreal, Montreal, PQ H3T 2A7, Canada
[3] Ecole Polytech, LIX, F-91128 Palaiseau, France
关键词
COMMUNITY STRUCTURE; IDENTIFICATION; RESOLUTION; ALGORITHM;
D O I
10.1103/PhysRevE.83.056105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Community detection in networks based on modularity maximization is currently done with hierarchical divisive or agglomerative as well as partitioning heuristics, hybrids, and, in a few papers, exact algorithms. We consider here the case of hierarchical networks in which communities should be detected and propose a divisive heuristic which is locally optimal in the sense that each of the successive bipartitions is done in a provably optimal way. This heuristic is compared with the spectral-based hierarchical divisive heuristic of Newman [Proc. Natl. Acad. Sci. USA 103, 8577 (2006).] and with the hierarchical agglomerative heuristic of Clauset, Newman, and Moore [Phys. Rev. E 70, 066111 (2004).]. Computational results are given for a series of problems of the literature with up to 4941 vertices and 6594 edges. They show that the proposed divisive heuristic gives better results than the divisive heuristic of Newman and than the agglomerative heuristic of Clauset et al.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Modularity-maximizing graph communities via mathematical programming [J].
Agarwal, G. ;
Kempe, D. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (03) :409-418
[2]   Column generation algorithms for exact modularity maximization in networks [J].
Aloise, Daniel ;
Cafieri, Sonia ;
Caporossi, Gilles ;
Hansen, Pierre ;
Perron, Sylvain ;
Liberti, Leo .
PHYSICAL REVIEW E, 2010, 82 (04)
[3]  
[Anonymous], NETWORKS INTRO
[4]  
[Anonymous], 1970, Bell System Technical Journal, DOI [10.1002/j.1538-7305.1970.tb01770.x, DOI 10.1002/J.1538-7305.1970.TB01770.X]
[5]  
[Anonymous], 1993, The Stanford graph base: A platform for combinatorial computing
[6]  
[Anonymous], ARXIV0702048V1
[7]  
[Anonymous], ARXIV07110491
[8]  
Benzecri J., 1982, CAHIERS ANAL DONNEES, V7, P209
[9]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[10]   Detecting complex network modularity by dynamical clustering [J].
Boccaletti, S. ;
Ivanchenko, M. ;
Latora, V. ;
Pluchino, A. ;
Rapisarda, A. .
PHYSICAL REVIEW E, 2007, 75 (04)