A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting

被引:14
作者
Choe, J
Guo, HWH
van den Engh, G
机构
[1] Inst Syst Biol, Seattle, WA 98103 USA
[2] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
D O I
10.1093/nar/gni049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular biology critically depends upon the isolation of desired DNA sequences. Flow cytometry, with its capacity to interrogate and sort more than 50 000 cells/s, shows great potential to expedite clone characterization and isolation. Intrinsic heterogeneity of protein expression levels in cells limits the utility of single fluorescent reporters for cell-sorting. Here, we report a novel dual-fluorescence strategy that overcomes the inherent limitations of single reporter systems by controlling for expression variability. We demonstrate a dual-reporter system using the green fluorescent protein (GFP) gene fused to the Discosoma red fluorescent protein (DsRed) gene. The system reports the successful insertion of foreign DNA with the loss of DsRed fluorescence and the maintenance of GFP fluorescence. Single cells containing inserts are readily recognized by their altered ratios of green to red fluorescence and separated using a high-speed cell-sorter for further processing. This novel reporter system and vector were successfully validated by shotgun library construction, cloned sequence isolation, PCR amplification and DNA sequencing of cloned inserts from bacteria after cell-sorting. This simple, robust system can also be adapted for diverse biosensor assays and is amenable to miniaturization. We demonstrated that dual-fluorescence reporting coupled with high-speed cell-sorting provides a more efficient alternative to traditional methods of clone isolation.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 25 条
[1]   Combinatorial and computational challenges for biocatalyst design [J].
Arnold, FH .
NATURE, 2001, 409 (6817) :253-257
[2]   Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat [J].
Axtell, CA ;
Beattie, GA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) :4604-4612
[3]   Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) [J].
Bevis, BJ ;
Glick, BS .
NATURE BIOTECHNOLOGY, 2002, 20 (01) :83-87
[4]   DETERMINATION OF THE OPTIMAL ALIGNED SPACING BETWEEN THE SHINE-DALGARNO SEQUENCE AND THE TRANSLATION INITIATION CODON OF ESCHERICHIA-COLI MESSENGER-RNAS [J].
CHEN, HY ;
BJERKNES, M ;
KUMAR, R ;
JAY, E .
NUCLEIC ACIDS RESEARCH, 1994, 22 (23) :4953-4957
[5]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[6]   Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies [J].
Daugherty, PS ;
Chen, G ;
Iverson, BL ;
Georgiou, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (05) :2029-2034
[7]  
DURACK G, 2000, EMERGNG TOOLS SINGLE
[8]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[9]   Improving enzymes for cancer gene therapy [J].
Encell, LP ;
Landis, DM ;
Loeb, LA .
NATURE BIOTECHNOLOGY, 1999, 17 (02) :143-147
[10]   Base-calling of automated sequencer traces using phred.: I.: Accuracy assessment [J].
Ewing, B ;
Hillier, L ;
Wendl, MC ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :175-185