Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin

被引:33
作者
Brazas, Michelle D. [1 ]
Breidenstein, Elena B. A. [1 ]
Overhage, Joerg [1 ]
Hancock, Robert E. W. [1 ]
机构
[1] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC, Canada
关键词
D O I
10.1128/AAC.00830-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
With few novel antimicrobials in the pharmaceutical pipeline, resistance to the current selection of antibiotics represents a significant therapeutic challenge. Microbial persistence in subinhibitory antibiotic environments has been proposed to contribute to the development of resistance. Pseudomonas aeruginosa cultures pretreated with subinhibitory concentrations of ciprofloxacin were found to exhibit an adaptive resistance phenotype when cultures were subsequently exposed to suprainhibitory ciprolloxacin concentrations. Microarray experiments revealed candidate genes involved in such adaptive resistance. Screening of 10,000 Tn5-luxCDABE mutants identified several mutants with increased or decreased ciprofloxacin susceptibilities, including mutants in PA1803, a close homolog of the ATP-dependent Ion protease, which were found to exhibit >= 4-fold-increased susceptibilities to ciprofloxacin and other fluoroquinolones, but not to gentamicin or imipenem, as well as a characteristic elongated morphology. Complementation of the lon mutant restored wild-type antibiotic susceptibility and cell morphology. Expression of the Ion mutant, as monitored through a luciferase reporter fusion, was found to increase over time in the presence of subinhibitory ciprofloxacin concentrations. The data are consistent with the hypothesis that the induction of Lon by ciprofloxacin is involved in adaptive resistance.
引用
收藏
页码:4276 / 4283
页数:8
相关论文
共 51 条
[1]   Widespread distribution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum [J].
Abella, M ;
Erill, I ;
Jara, M ;
Mazón, G ;
Campoy, S ;
Barbé, J .
MOLECULAR MICROBIOLOGY, 2004, 54 (01) :212-222
[2]  
[Anonymous], 1991, ANTIBIOTICS LAB MED
[3]   Proteomic approach to understanding antibiotic action [J].
Bandow, JE ;
Brötz, H ;
Leichert, LIO ;
Labischinski, H ;
Hecker, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (03) :948-955
[4]   Low-level antibacterial resistance: a gateway to clinical resistance [J].
Baquero, F .
DRUG RESISTANCE UPDATES, 2001, 4 (02) :93-105
[5]   Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis [J].
Barclay, ML ;
Begg, EJ ;
Chambers, ST ;
Thornley, PE ;
Pattemore, PK ;
Grimwood, K .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1996, 37 (06) :1155-1164
[6]   SOS response promotes horizontal dissemination of antibiotic resistance genes [J].
Beaber, JW ;
Hochhut, B ;
Waldor, MK .
NATURE, 2004, 427 (6969) :72-74
[7]   Stress-induced mutagenesis in bacteria [J].
Bjedov, I ;
Tenaillon, O ;
Gérard, B ;
Souza, V ;
Denamur, E ;
Radman, M ;
Taddei, F ;
Matic, I .
SCIENCE, 2003, 300 (5624) :1404-1409
[8]   PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa [J].
Blazquez, Jesus ;
Gomez-Gomez, Jose-Maria ;
Oliver, Antonio ;
Juan, Carlos ;
Kapur, Vivek ;
Martin, Soledad .
MOLECULAR MICROBIOLOGY, 2006, 62 (01) :84-99
[9]   Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa [J].
Brazas, MD ;
Hancock, REW .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2005, 49 (08) :3222-3227
[10]   Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance [J].
Brazas, MD ;
Hancock, REW .
DRUG DISCOVERY TODAY, 2005, 10 (18) :1245-1252