The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis

被引:165
作者
Ito, Toshiro [1 ,2 ]
Ng, Kian-Hong [1 ]
Lim, Tze-Soo [1 ]
Yu, Hao [1 ,2 ]
Meyerowitz, Elliot M. [3 ]
机构
[1] Natl Univ Singapore, Temasek Life Sci Lab, Singapore 117604, Singapore
[2] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117543, Singapore
[3] CALTECH, Div Biol 156 29, Pasadena, CA 91125 USA
关键词
D O I
10.1105/tpc.107.055467
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG expression in later flower development is unknown. To examine the timing of AG action and its possible late-stage functions, we performed a series of time-course experiments using a transgenic line with inducible AG activity in an ag homozygous mutant background. We show that AG controls late-stage stamen development, including anther morphogenesis and dehiscence, as well as filament formation and elongation. We further show that AG coordinates late stamen maturation by controlling a biosynthetic gene of the lipid-derived phytohormone jasmonic acid (JA). Expression analysis and in vivo binding of AG indicate that AG directly regulates the transcription of a catalytic enzyme of JA, DEFECTIVE IN ANTHER DEHISCENCE1. Our results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages, with organ specification induced early, followed by phytohormone biosynthesis to coordinate stamen maturation.
引用
收藏
页码:3516 / 3529
页数:14
相关论文
共 56 条
[1]   Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS [J].
Bey, M ;
Stüber, K ;
Fellenberg, K ;
Schwarz-Sommera, Z ;
Sommer, H ;
Saedler, H ;
Zachgo, S .
PLANT CELL, 2004, 16 (12) :3197-3215
[2]   EXPRESSION OF THE ARABIDOPSIS FLORAL HOMEOTIC GENE AGAMOUS IS RESTRICTED TO SPECIFIC CELL-TYPES LATE IN FLOWER DEVELOPMENT [J].
BOWMAN, JL ;
DREWS, GN ;
MEYEROWITZ, EM .
PLANT CELL, 1991, 3 (08) :749-758
[3]   GENES DIRECTING FLOWER DEVELOPMENT IN ARABIDOPSIS [J].
BOWMAN, JL ;
SMYTH, DR ;
MEYEROWITZ, EM .
PLANT CELL, 1989, 1 (01) :37-52
[4]   A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis [J].
Burbulis, IE ;
Iacobucci, M ;
Shirley, BW .
PLANT CELL, 1996, 8 (06) :1013-1025
[5]  
Capovilla M, 1998, DEVELOPMENT, V125, P4949
[6]   WHITE POLLEN IN MAIZE [J].
COE, EH ;
MCCORMICK, SM ;
MODENA, SA .
JOURNAL OF HEREDITY, 1981, 72 (05) :318-320
[7]   THE WAR OF THE WHORLS - GENETIC INTERACTIONS CONTROLLING FLOWER DEVELOPMENT [J].
COEN, ES ;
MEYEROWITZ, EM .
NATURE, 1991, 353 (6339) :31-37
[8]   Hox control of organ size by regulation of morphogen production and mobility [J].
Crickmore, Michael A. ;
Mann, Richard S. .
SCIENCE, 2006, 313 (5783) :63-68
[9]   PLENA and FARINELLI:: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development [J].
Davies, B ;
Motte, P ;
Keck, E ;
Saedler, H ;
Sommer, H ;
Schwarz-Sommer, Z .
EMBO JOURNAL, 1999, 18 (14) :4023-4034
[10]   NEGATIVE REGULATION OF THE ARABIDOPSIS HOMEOTIC GENE AGAMOUS BY THE APETALA2 PRODUCT [J].
DREWS, GN ;
BOWMAN, JL ;
MEYEROWITZ, EM .
CELL, 1991, 65 (06) :991-1002