Fractal dimension for poincare recurrences as an indicator of synchronized chaotic regimes

被引:20
作者
Afraimovich, V [1 ]
Lin, WW
Rulkov, NF
机构
[1] Univ Autonoma San Luis Potosi, Inst Invest Comunicac Opt, San Luis Potosi 78000, Mexico
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
[3] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 10期
关键词
D O I
10.1142/S0218127400001456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The studies of the phenomenon of chaos synchronization are usually based upon the analysis of the existence of transversely stable invariant manifold that contains an invariant set of trajectories corresponding to synchronous motions. In this paper we develop a new approach that relies on the notions of topological synchronization and the dimension for Poincare recurrences. We show that the dimension of Poincare recurrences may serve as an indicator for the onset of synchronized chaotic oscillations. This indicator is capable of detecting the regimes of chaos synchronization characterized by the frequency ratio p:q.
引用
收藏
页码:2323 / 2337
页数:15
相关论文
共 20 条
[1]   Poincare recurrences of coupled subsystems in synchronized regimes [J].
Afraimovich, V .
TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (02) :139-161
[2]  
AFRAIMOVICH V, 1995, PHYS REV E, V55, P5418
[3]  
AFRAIMOVICH V, 1998, LECT NOTE PHYS, V511, P59
[4]  
AFRAIMOVICH VS, 1997, CHAOS, V1, P12
[5]  
AFRAIMOVICH VS, 1986, RADIOPHYS QUANT EL, V29, P747
[6]  
ARNOLD VI, 1994, ENCY MATH SCI NS DYN, V5
[7]  
BRONSHTEYN IU, 1997, SYNCHRONIZATION IDEN
[8]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]  
Guckenheimer J, 2013, APPL MATH SCI