The transcriptome of Populus in elevated CO2

被引:74
作者
Taylor, G
Street, NR
Tricker, PJ
Sjödin, A
Graham, L
Skogström, O
Calfapietra, C
Scarascia-Mugnozza, G
Jansson, S
机构
[1] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England
[2] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, SE-90187 Umea, Sweden
[3] Univ Tuscia, Dept Forest Environm & Resources, I-01100 Viterbo, Italy
关键词
elevated [CO2; FACE (free-air CO2 enrichment); gene expression; leaf development; microarray; Populus;
D O I
10.1111/j.1469-8137.2005.01450.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus x euramericana (clone I-214) to elevated [CO2] in a FACE (free-air CO2 enrichment) experiment. Gene expression was sensitive to elevated [CO2] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO2 environments. For young leaves most differentially expressed genes were upregulated in elevated [CO2], while in semimature leaves most were downregulated in elevated [CO2]. For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO2 was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT-PCR. This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO2.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 54 条
[1]   A transcriptional timetable of autumn senescence -: art. no. R24 [J].
Andersson, A ;
Keskitalo, J ;
Sjödin, A ;
Bhalerao, R ;
Sterky, F ;
Wissel, K ;
Tandre, K ;
Aspeborg, H ;
Moyle, R ;
Ohmiya, Y ;
Bhalerao, R ;
Brunner, A ;
Gustafsson, P ;
Karlsson, J ;
Lundeberg, J ;
Nilsson, O ;
Sandberg, G ;
Strauss, S ;
Sundberg, B ;
Uhlen, M ;
Jansson, S ;
Nilsson, P .
GENOME BIOLOGY, 2004, 5 (04)
[2]   Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice [J].
Bernacchi, CJ ;
Calfapietra, C ;
Davey, PA ;
Wittig, VE ;
Scarascia-Mugnozza, GE ;
Raines, CA ;
Long, SP .
NEW PHYTOLOGIST, 2003, 159 (03) :609-621
[3]   Gene expression in autumn leaves [J].
Bhalerao, R ;
Keskitalo, J ;
Sterky, F ;
Erlandsson, R ;
Björkbacka, H ;
Birve, SJ ;
Karlsson, J ;
Gardeström, P ;
Gustafsson, P ;
Lundeberg, J ;
Jansson, S .
PLANT PHYSIOLOGY, 2003, 131 (02) :430-442
[4]   Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation [J].
Calfapietra, C ;
Gielen, B ;
Galema, ANJ ;
Lukac, M ;
De Angelis, P ;
Moscatelli, MC ;
Ceulemans, R ;
Scarascia-Mugnozza, G .
TREE PHYSIOLOGY, 2003, 23 (12) :805-814
[5]  
Chang S. J., 1993, Plant Molecular Biology Reporter, V11, P113, DOI 10.1007/BF02670468
[6]   Global and hormone-induced gene expression changes during shoot development in Arabidopsis [J].
Che, P ;
Gingerich, DJ ;
Lall, S ;
Howell, SH .
PLANT CELL, 2002, 14 (11) :2771-2785
[7]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[8]   Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J].
Cheng, SH ;
Willmann, MR ;
Chen, HC ;
Sheen, J .
PLANT PHYSIOLOGY, 2002, 129 (02) :469-485
[9]   Analysis of gene expression in the developing mouse retina [J].
Díaz, E ;
Yang, YH ;
Ferreira, T ;
Loh, KC ;
Okazaki, Y ;
Hayashizaki, Y ;
Tessier-Lavigne, M ;
Speed, TP ;
Ngai, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5491-5496
[10]   More efficient plants: A consequence of rising atmospheric CO2? [J].
Drake, BG ;
GonzalezMeler, MA ;
Long, SP .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :609-639