Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials

被引:262
作者
Jesse, Stephen [1 ,2 ]
Rodriguez, Brian J. [1 ,2 ]
Choudhury, Samrat [3 ]
Baddorf, Arthur P. [2 ]
Vrejoiu, Ionela [4 ]
Hesse, Dietrich [4 ]
Alexe, Marin [4 ]
Eliseev, Eugene A. [5 ]
Morozovska, Anna N. [6 ]
Zhang, Jingxian [3 ]
Chen, Long-Qing [3 ]
Kalinin, Sergei V. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[5] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine
[6] Natl Acad Sci Ukraine, V Lashkaryov Inst Semiconductor Phys, UA-03028 Kiev, Ukraine
基金
英国科研创新办公室; 美国国家科学基金会;
关键词
D O I
10.1038/nmat2114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Macroscopic ferroelectric polarization switching, similar to other first-order phase transitions, is controlled by nucleation centres. Despite 50 years of extensive theoretical and experimental effort, the microstructural origins of the Landauer paradox, that is, the experimentally observed low values of coercive fields in ferroelectrics corresponding to implausibly large nucleation activation energies, are still a mystery. Here, we develop an approach to visualize the nucleation centres controlling polarization switching processes with nanometre resolution, determine their spatial and energy distribution and correlate them to local microstructure. The random-bond and random-field components of the disorder potential are extracted from positive and negative nucleation biases. Observation of enhanced nucleation activity at the 90 degrees domain wall boundaries and intersections combined with phase-field modelling identifies them as a class of nucleation centres that control switching in structural-defect-free materials.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 36 条
[1]   Effect of surface induced nucleation of ferroelastic domains on polarization switching in constrained ferroelectrics [J].
Ahluwalia, R ;
Cao, WW .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :537-544
[2]  
Ahluwalia R., 2000, PHYS REV B, V63
[3]   Defect-related lattice strain and the transition temperature in ferroelectric thin films [J].
Balzar, D ;
Ramakrishnan, PA ;
Hermann, AM .
PHYSICAL REVIEW B, 2004, 70 (09) :092103-1
[4]   THEORY OF 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K .
REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (07) :783-859
[5]   Easy collective polarization switching in ferroelectrics [J].
Bratkovsky, AM ;
Levanyuk, AP .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4614-4617
[6]   Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films:: Effect of internal stresses and dislocation-type defects [J].
Canedy, CL ;
Li, H ;
Alpay, SP ;
Salamanca-Riba, L ;
Roytburd, AL ;
Ramesh, R .
APPLIED PHYSICS LETTERS, 2000, 77 (11) :1695-1697
[7]  
Chaikin P., 1995, PRINCIPLES CONDENSED
[8]   Nanodomain manipulation for ultrahigh density ferroelectric data storage [J].
Cho, Y ;
Hashimoto, S ;
Odagawa, N ;
Tanaka, K ;
Hiranaga, Y .
NANOTECHNOLOGY, 2006, 17 (07) :S137-S141
[9]   Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations [J].
Choudhury, S. ;
Li, Y. L. ;
Krill, C., III ;
Chen, L. Q. .
ACTA MATERIALIA, 2007, 55 (04) :1415-1426
[10]   Elastic coupling between 90° twin walls and interfacial dislocations in epitaxial ferroelectric perovskites:: A quantitative high-resolution transmission electron microscopy study -: art. no. 174112 [J].
Chu, MW ;
Szafraniak, I ;
Hesse, D ;
Alexe, M ;
Gösele, U .
PHYSICAL REVIEW B, 2005, 72 (17)