HIV-1 integrase can process a 3′-end crosslinked substrate -: Implications of DNA end-fraying requirement during the 3′-processing reaction

被引:9
作者
Agapkina, J
Smolov, M
Zubin, E
Mouscadet, JF
Gottikh, M [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Belozersky Inst Physicochem Biol, Moscow 119992, Russia
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow, Russia
[3] Russian Acad Sci, Inst Chem Phys Problems, Chernogolovka 142432, Russia
[4] Ecole Normale Super, CNRS, UMR 8113, LBPA, Cachan, France
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2004年 / 271卷 / 01期
关键词
integrase; 2 '-aminonucleoside; interstrand cross-linking; DNA modification;
D O I
10.1046/j.1432-1033.2003.03921.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Integrase of the human immunodeficiency virus type-1 (HIV-1) recognizes specific sequences located in the U3 and U5 regions at the ends of viral DNA. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-aminonucleosides or non-nucleoside 1,3-propanediol insertions at the third and terminal positions and studied their interactions with HIV-1 integrase. Both modifications introduced a local structural distortion in the DNA double helix. Replacement of the terminal nucleosides by corresponding 2'-aminonucleosides had no significant effect on integrase activity. We used an integrase substrate bearing terminal 2'-aminonucleosides in both strands to synthesize a duplex with cross-linked strands. This duplex was then used to determine whether terminal base pair disruption is an obligatory step of retroviral DNA 3'-processing. Processing of the cross-linked analog of the integrase substrate yielded a product of the same length as 3'-processing of the wild-type substrate but the reaction efficiency was lower. Replacement of the third adenosine in the processed strand by a corresponding 2'-aminonucleoside did not affect integrase activity, whereas, its replacement by 1,3-propanediol completely inhibited 3'-processing. Both modifications of the complementary thymidine in the nonprocessed strand increased the initial rate of 3'-processing. The same effect was observed when both nucleosides, at the third position, were replaced by corresponding 2'-aminonucleosides. This indicates that the local duplex distortion facilitated the cleavage of the phosphodiester bond. Thus, a localized destabilization of the third A-T base pair is necessary for efficient 3'-processing, whereas 3'-end-fraying is important but not absolutely required.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 29 条
[1]   Flexibility of the B-DNA backbone: effects of local and neighbouring sequences on pyrimidine-purine steps [J].
Bertrand, HO ;
Ha-Duong, T ;
Fermandjian, S ;
Hartmann, B .
NUCLEIC ACIDS RESEARCH, 1998, 26 (05) :1261-1267
[2]   Dynamic, thermodynamic, and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase [J].
Bugreev, DV ;
Baranova, S ;
Zakharova, OD ;
Parissi, V ;
Desjobert, C ;
Sottofattori, E ;
Balbi, A ;
Litvak, S ;
Tarrago-Litvak, L ;
Nevinsky, GA .
BIOCHEMISTRY, 2003, 42 (30) :9235-9247
[3]   Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding [J].
Chen, JCH ;
Krucinski, J ;
Miercke, LJW ;
Finer-Moore, JS ;
Tang, AH ;
Leavitt, AD ;
Stroud, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8233-8238
[4]  
Dickerson RE, 1997, BIOPOLYMERS, V44, P361, DOI 10.1002/(SICI)1097-0282(1997)44:4<361::AID-BIP4>3.0.CO
[5]  
2-X
[6]   DNA bending: The prevalence of kinkiness and the virtues of normality [J].
Dickerson, RE .
NUCLEIC ACIDS RESEARCH, 1998, 26 (08) :1906-1926
[7]   HIV integrase structure and function [J].
Esposito, D ;
Craigie, R .
ADVANCES IN VIRUS RESEARCH, VOL 52, 1999, 52 :319-333
[8]   Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction [J].
Esposito, D ;
Craigie, R .
EMBO JOURNAL, 1998, 17 (19) :5832-5843
[9]   Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence [J].
Gelfand, CA ;
Plum, GE ;
Grollman, AP ;
Johnson, F ;
Breslauer, KJ .
BIOCHEMISTRY, 1998, 37 (20) :7321-7327
[10]  
Goldberg D, 1998, Commun Dis Public Health, V1, P95