Comb-shaped poly(arylene ether sulfone)s as proton exchange membranes

被引:149
作者
Kim, Dae Sik [1 ]
Robertson, Gilles P. [1 ]
Guiver, Michael D. [1 ]
机构
[1] Natl Res Council Canada, Insche, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada
关键词
D O I
10.1021/ma7027215
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new sulfonated side-chain grafting unit containing two or four sulfonic acid groups was synthesized using sulfonated 4-fluorobenzophenone (FBP) and 1,1-bis(4-hydroxyphenyl)-1,4-((4-fluorophenyl)thio)phenyl-2,2,2-trifluoroethane (3FBPT). A conventional aromatic nucleophilic substitution (SNAr) was used for copolymerization of poly(arylene ether sulfone) containing a methoxy group. After converting the methoxy group to the reactive hydroxyl group, this functionalized copolymer was reacted to graft the sulfonated side chains to make the comb-shaped sulfonated poly(arylene ether sulfone) copolymers. All the polymers were characterized by H-1 NMR, thermogravimetric analysis (TGA), the water Uptake, and proton and methanol transport for fuel cell applications. These comb-shaped sulfonated polymers had good properties as polyelectrolyte membrane materials. The comb-shaped copolymers with two or four sulfonic acid groups show high proton conductivity in the range of 34-147 and 63-125 mS/cm, respectively. The methanol permeabilities of these copolymers were in the range of 8.2 x 10(-7) -5.6 x 10(-8) cm(2)/s. A combination of high proton conductivities, low water uptake, and low methanol permeabilities for some of the comb-shaped copolymers indicated that they are good candidate materials for proton exchange membrane in fuel cell applications.
引用
收藏
页码:2126 / 2134
页数:9
相关论文
共 30 条
[1]   Enhanced conductivity in morphologically controlled proton exchange membranes: Synthesis of macromonomers by SFRP and their incorporation into graft polymers [J].
Ding, JF ;
Chuy, C ;
Holdcroft, S .
MACROMOLECULES, 2002, 35 (04) :1348-1355
[2]  
EINSLA BR, 2004, AM CHEM SOC DIV FUEL, V49, P616
[3]  
Eisenberg A., 1970, MACROMOLECULES, V3, P147, DOI DOI 10.1021/MA60014A006
[4]   Novel sulfonated polyimides as polyelectrolytes for fuel cell application.: 1.: Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid [J].
Fang, JH ;
Guo, XX ;
Harada, S ;
Watari, T ;
Tanaka, K ;
Kita, H ;
Okamoto, K .
MACROMOLECULES, 2002, 35 (24) :9022-9028
[5]   Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage [J].
Gao, Y ;
Robertson, GP ;
Guiver, MD ;
Mikhailenko, SD ;
Li, X ;
Kaliaguine, S .
POLYMER, 2006, 47 (03) :808-816
[6]   Synthesis of copoly(aryl ether ether nitrile)s containing sulfonic acid groups for PEM application [J].
Gao, Y ;
Robertson, GP ;
Guiver, MD ;
Mikhailenko, SD ;
Li, X ;
Kaliaguine, S .
MACROMOLECULES, 2005, 38 (08) :3237-3245
[7]   Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J].
Genies, C ;
Mercier, R ;
Sillion, B ;
Cornet, N ;
Gebel, G ;
Pineri, M .
POLYMER, 2001, 42 (02) :359-373
[8]   Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes.: I [J].
Ghassemi, H ;
McGrath, JE .
POLYMER, 2004, 45 (17) :5847-5854
[9]   Alternative polymer systems for proton exchange membranes (PEMs) [J].
Hickner, MA ;
Ghassemi, H ;
Kim, YS ;
Einsla, BR ;
McGrath, JE .
CHEMICAL REVIEWS, 2004, 104 (10) :4587-4611
[10]   Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications [J].
Jones, DJ ;
Rozière, J .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :41-58