Mott-Hubbard transition versus anderson localization in correlated electron systems with disorder

被引:211
作者
Byczuk, K
Hofstetter, W
Vollhardt, D
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[2] MIT, Condensed Matter Theory Grp, Cambridge, MA 02139 USA
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
D O I
10.1103/PhysRevLett.94.056404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase diagram of correlated, disordered electron systems is calculated within dynamical mean-field theory using the geometrically averaged ("typical") local density of states. Correlated metal, Mott insulator, and Anderson insulator phases, as well as coexistence and crossover regimes, are identified. The Mott and Anderson insulators are found to be continuously connected.
引用
收藏
页数:4
相关论文
共 43 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]   THE ANDERSON-MOTT TRANSITION [J].
BELITZ, D ;
KIRKPATRICK, TR .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :261-390
[3]   Anderson localization in strongly coupled disordered electron-phonon systems [J].
Bronold, FX ;
Alvermann, A ;
Fehske, H .
PHILOSOPHICAL MAGAZINE, 2004, 84 (07) :673-704
[4]   Numerical renormalization group calculations for the self-energy of the impurity Anderson model [J].
Bulla, R ;
Hewson, AC ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) :8365-8380
[5]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[6]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[7]   INTERACTION-DRIVEN METAL-INSULATOR TRANSITIONS IN DISORDERED FERMION SYSTEMS [J].
CASTELLANI, C ;
DICASTRO, C ;
LEE, PA ;
MA, M .
PHYSICAL REVIEW B, 1984, 30 (02) :527-543
[8]   TRANSPORT-COEFFICIENTS OF THE ANDERSON MODEL VIA THE NUMERICAL RENORMALIZATION-GROUP [J].
COSTI, TA ;
HEWSON, AC ;
ZLATIC, V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (13) :2519-2558
[9]  
Crow EL, 1988, LOG NORMAL DISTRIBUT
[10]  
DENTENEER PJH, 2001, PHYS REV LETT, V87