Characterization of the last subunit of the Arabidopsis COP9 signalosome: Implications for the overall structure and origin of the complex

被引:49
作者
Serino, G
Su, HW
Peng, ZH
Tsuge, T
Wei, N
Gu, HY
Deng, XW [1 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Peking Univ, Coll Life Sci, Peking Yale Joint Ctr Plant Mol Genet & Agrobiote, Beijing 100871, Peoples R China
关键词
D O I
10.1105/tpc.009092
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that resembles the lid subcomplex of proteasomes. Through its ability to regulate specific proteasome-mediated protein degradation events, CSN controls multiple aspects of development. Here, we report the cloning and characterization of AtCSN2, the last uncharacterized CSN subunit from Arabidopsis. We show that the AtCSN2 gene corresponds to the previously identified FUS12 locus and that AtCSN2 copurifies with CSN, confirming that AtCSN2 is an integral component of CSN. AtCSN2 is not only able to interact with the SCFTIR1 subunit AtCUL1, which is partially responsible for the regulatory interaction between CSN and SCFTIR1, but also interacts with AtCUL3, suggesting that CSN is able to regulate the activity of other cullin-based E3 ligases through conserved interactions. Phylogenetic analysis indicated that the duplication and subsequent divergence events that led to the genes that encode CSN and lid subunits occurred before the divergence of unicellular and multicellular eukaryotic organisms and that the CSN subunits were more conserved than the lid subunits during evolution. Comparative analyses of the subunit interaction of CSN revealed a set of conserved subunit contacts and resulted in a model of CSN subunit topology, some aspects of which were substantiated by in vivo cross-link tests.
引用
收藏
页码:719 / 731
页数:13
相关论文
共 52 条
[1]   A YEAST MATING-SELECTION SCHEME FOR DETECTION OF PROTEIN-PROTEIN INTERACTIONS [J].
BENDIXEN, C ;
GANGLOFF, S ;
ROTHSTEIN, R .
NUCLEIC ACIDS RESEARCH, 1994, 22 (09) :1778-1779
[2]  
Blatch GL, 1999, BIOESSAYS, V21, P932, DOI 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.3.CO
[3]  
2-E
[4]   The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch [J].
Chamovitz, DA ;
Wei, N ;
Osterlund, MT ;
vonArnim, AG ;
Staub, JM ;
Matsui, M ;
Deng, XW .
CELL, 1996, 86 (01) :115-121
[5]   Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1 [J].
Cope, GA ;
Suh, GSB ;
Aravind, L ;
Schwarz, SE ;
Zipursky, SL ;
Koonin, EV ;
Deshaies, RJ .
SCIENCE, 2002, 298 (5593) :608-611
[6]   Evolutionary rate in the protein interaction network [J].
Fraser, HB ;
Hirsh, AE ;
Steinmetz, LM ;
Scharfe, C ;
Feldman, MW .
SCIENCE, 2002, 296 (5568) :750-752
[7]   The COP9 signalosome is essential for development of Drosophila melanogaster [J].
Freilich, S ;
Oron, E ;
Kapp, Y ;
Nevo-Caspi, Y ;
Orgad, S ;
Segal, D ;
Chamovitz, DA .
CURRENT BIOLOGY, 1999, 9 (20) :1187-1190
[8]   Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome [J].
Fu, HY ;
Reis, N ;
Lee, Y ;
Glickman, MH ;
Vierstra, RD .
EMBO JOURNAL, 2001, 20 (24) :7096-7107
[9]   A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 [J].
Glickman, MH ;
Rubin, DM ;
Coux, O ;
Wefes, I ;
Pfeifer, G ;
Cjeka, Z ;
Baumeister, W ;
Fried, VA ;
Finley, D .
CELL, 1998, 94 (05) :615-623
[10]   Getting in and out of the proteasome [J].
Glickman, MH .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2000, 11 (03) :149-158