The survival of motor neurons protein determines the capacity for snRNP assembly: Biochemical deficiency in spinal muscular atrophy

被引:147
作者
Wan, LL [1 ]
Battle, DJ [1 ]
Yong, JS [1 ]
Gubitz, AK [1 ]
Kolb, SJ [1 ]
Wang, J [1 ]
Dreyfuss, G [1 ]
机构
[1] Univ Penn, Sch Med, Howard Hughes Med Inst, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
D O I
10.1128/MCB.25.13.5543-5551.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.
引用
收藏
页码:5543 / 5551
页数:9
相关论文
共 49 条
[1]   The Sm domain is an ancient RNA-binding motif with oligo(U) specificity [J].
Achsel, T ;
Stark, H ;
Lührmann, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :3685-3689
[2]   U2 RNA SHARES A STRUCTURAL DOMAIN WITH U1, U4, AND U5 RNAS [J].
BRANLANT, C ;
KROL, A ;
EBEL, JP ;
LAZAR, E ;
HAENDLER, B ;
JACOB, M .
EMBO JOURNAL, 1982, 1 (10) :1259-1265
[3]   Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly:: implications for spinal muscular atrophy [J].
Buhler, D ;
Raker, V ;
Lührmann, R ;
Fischer, U .
HUMAN MOLECULAR GENETICS, 1999, 8 (13) :2351-2357
[4]   Gemin4: A novel component of the SMN complex that is found in both gems and nucleoli [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Yong, J ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 2000, 148 (06) :1177-1186
[5]   Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1181-1193
[6]  
Cifuentes-Diaz Carmen, 2002, Semin Pediatr Neurol, V9, P145, DOI 10.1053/spen.2002.33801
[7]   The survival motor neuron protein in spinal muscular atrophy [J].
Coovert, DD ;
Le, TT ;
McAndrew, PE ;
Strasswimmer, J ;
Crawford, TO ;
Mendell, JR ;
Coulson, SE ;
Androphy, EJ ;
Prior, TW ;
Burghes, AHM .
HUMAN MOLECULAR GENETICS, 1997, 6 (08) :1205-1214
[8]   The neurobiology of childhood spinal muscular atrophy [J].
Crawford, TO ;
Pardo, CA .
NEUROBIOLOGY OF DISEASE, 1996, 3 (02) :97-110
[9]   AN ESSENTIAL SIGNALING ROLE FOR THE M3G CAP IN THE TRANSPORT OF U1 SNRNP TO THE NUCLEUS [J].
FISCHER, U ;
LUHRMANN, R .
SCIENCE, 1990, 249 (4970) :786-790
[10]   The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis [J].
Fischer, U ;
Liu, Q ;
Dreyfuss, G .
CELL, 1997, 90 (06) :1023-1029