Closed-form analytic maps in one and two dimensions can simulate universal Turing machines

被引:47
作者
Koiran, P
Moore, C
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] Ecole Normale Super Lyon, Lab Informat Parallelisme, F-69364 Lyon 07, France
关键词
D O I
10.1016/S0304-3975(98)00117-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show closed-form analytic functions consisting of a finite number of trigonometric terms can simulate Turing machines, with exponential slowdown in one dimension or in real time in two or more. (C) 1999-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 14 条
[1]   REACHABILITY ANALYSIS OF DYNAMICAL-SYSTEMS HAVING PIECEWISE-CONSTANT DERIVATIVES [J].
ASARIN, E ;
MALER, O ;
PNUELI, A .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :35-65
[2]   FUNCTIONAL-EQUATIONS ASSOCIATED WITH CONGRUENTIAL FUNCTIONS [J].
BURCKEL, S .
THEORETICAL COMPUTER SCIENCE, 1994, 123 (02) :397-406
[3]  
CONWAY JH, 1972, P 1972 NUMB THEOR C, P49
[4]   COMPUTABILITY WITH LOW-DIMENSIONAL DYNAMICAL-SYSTEMS [J].
KOIRAN, P ;
COSNARD, M ;
GARZON, M .
THEORETICAL COMPUTER SCIENCE, 1994, 132 (1-2) :113-128
[5]  
Koiran P., 1993, THESIS ECOLE NORMALE
[6]   THE 3X+1 PROBLEM AND ITS GENERALIZATIONS [J].
LAGARIAS, JC .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01) :3-23
[7]  
Lindgren K., 1990, Complex Systems, V4, P299
[8]   BUSY BEAVER COMPETITION AND COLLATZ-LIKE PROBLEMS [J].
MICHEL, P .
ARCHIVE FOR MATHEMATICAL LOGIC, 1993, 32 (05) :351-367
[9]  
Minsky M. L., 1967, COMPUTATION FINITE I
[10]   GENERALIZED SHIFTS - UNPREDICTABILITY AND UNDECIDABILITY IN DYNAMIC-SYSTEMS [J].
MOORE, C .
NONLINEARITY, 1991, 4 (02) :199-230