Asymptotics beyond all orders for a low Reynolds number flow

被引:22
作者
Keller, JB
Ward, MJ
机构
[1] STANFORD UNIV,DEPT MECH ENGN,STANFORD,CA 94305
[2] UNIV BRITISH COLUMBIA,DEPT MATH,VANCOUVER,BC V6T 1Y4,CANADA
关键词
D O I
10.1007/BF00118834
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The solution for slow incompressible flow past a circular cylinder involves terms in powers of 1/log epsilon, epsilon times powers of 1/log epsilon, etc., where epsilon is the Reynolds number. Previously we showed how to determine the sum of all terms in powers of 1/log epsilon. Now we show how to go beyond all those terms to find the sum of all terms containing epsilon times a power of 1/log epsilon. The first sum gives the drag coefficient and represents a symmetric flow in the Stokes region near the cylinder. The second term reveals the asymmetry of the flow near the body. This problem is studied using a hybrid method which combines numerical computation and asymptotic analysis.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[3]  
Kaplun S., 1957, J MATH MECH, V6, P52
[4]   A HYBRID ASYMPTOTIC-NUMERICAL METHOD FOR LOW-REYNOLDS-NUMBER FLOWS PAST A CYLINDRICAL BODY [J].
KROPINSKI, MCA ;
WARD, MJ ;
KELLER, JB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (06) :1484-1510
[5]  
Lamb H., 1945, HYDRODYNAMICS
[6]  
Lorentz H. A., 1896, ZITTINGSVERLAG AKAD, V5, P168
[7]  
Oseen C.W., 1910, ARK MATH ASTRONOM FY, V6, P154
[8]   EXPANSIONS AT SMALL REYNOLDS NUMBERS FOR THE FLOW PAST A SPHERE AND A CIRCULAR CYLINDER [J].
PROUDMAN, I ;
PEARSON, JRA .
JOURNAL OF FLUID MECHANICS, 1957, 2 (03) :237-262
[9]   GENERALIZED EXPANSIONS FOR SLOW FLOW PAST A CYLINDER [J].
SKINNER, LA .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1975, 28 (AUG) :333-340
[10]  
Stokes GG., 1851, T CAMBRIDGE PHILOS S, V9, P8, DOI DOI 10.1017/CBO9780511702266.002