Embedding as a modeling problem

被引:121
作者
Judd, K [1 ]
Mees, A [1 ]
机构
[1] Univ Western Australia, Ctr Appl Dynam & Optimizat, Nedlands, WA 6907, Australia
来源
PHYSICA D | 1998年 / 120卷 / 3-4期
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0167-2789(98)00089-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard approaches to time-delay embedding will often fail to provide an embedding that is useful for many common applications. This happens in particular when there are multiple timescales in the dynamics. We present a modified procedure, non-uniform embedding, which overcomes such problems in many cases. For more complex nonlinear dynamics we introduce variable embedding, where, in a suitable sense, the embedding changes with the state of the system. We show how to implement these procedures by combining embedding and modeling into a single procedure with a single optimization goal. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 21 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]  
ABARBANEL HDI, 1992, LOCAL FALSE NEAREST
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]  
Albano A.-M, 1987, CHAOS BIOL SYSTEMS, P207, DOI 10.1007/978-1-4757-9631-5_24
[5]  
[Anonymous], 1981, LECT NOTES MATH
[6]  
BROOMHEAD DS, 1986, TOPOLOGICAL DIMENSIO
[7]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[8]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[9]  
GLENDENNING PA, 1983, J STAT PHYS, V35, P645
[10]  
HAGGAN V, 1984, J TIME SER ANAL, V5, P103