Random walks on braid groups: Brownian bridges, complexity and statistics

被引:30
作者
Nechaev, SK
Grosberg, AY
Vershik, AM
机构
[1] INST PHYS NUCL,PHYS MATH LAB,F-91406 ORSAY,FRANCE
[2] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[3] INST PHYS CHEM,MOSCOW 117977,RUSSIA
[4] VA STEKLOV MATH INST,ST PETERSBURG 191011,RUSSIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 10期
关键词
D O I
10.1088/0305-4470/29/10/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the limit behaviour of random walks on some non-commutative discrete groups related to knot theory. Namely, we study the connection between the limit behaviour of the Lyapunov exponent of products of non-commutative random matrices-generators of the braid group-and the asymptotics of powers of the algebraic invariants of randomly generated knots. We turn the simplest problems of knot statistics into the context of random walks on hyperbolic groups. We also consider the limit distribution of Brownian bridges on so-called locally non-commutative groups.
引用
收藏
页码:2411 / 2433
页数:23
相关论文
共 32 条
[1]   EXACTLY SOLVABLE MODELS AND NEW LINK POLYNOMIALS .1. N-STATE VERTEX MODELS [J].
AKUTSU, Y ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3039-3051
[2]   NEW HIERARCHY OF COLORED-BRAID-GROUP REPRESENTATIONS [J].
AKUTSU, Y ;
DEGUCHI, T .
PHYSICAL REVIEW LETTERS, 1991, 67 (07) :777-780
[3]  
Birman J.S., 1976, ANN MATH STUDIES, V82
[4]  
CHASSAING P, LECT NOTE MATH, V1064
[5]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [DOI 10.2307/1993589, 10.1090/s0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1]
[6]  
Gerzenshtein M.E., 1959, PROB THEOR APPL, V4, P424
[7]   AVERAGED KAUFFMAN INVARIANT AND QUASI-KNOT CONCEPT FOR LINEAR-POLYMERS [J].
GROSBERG, A ;
NECHAEV, S .
EUROPHYSICS LETTERS, 1992, 20 (07) :613-619
[8]   ALGEBRAIC INVARIANTS OF KNOTS AND DISORDERED POTTS-MODEL [J].
GROSBERG, A ;
NECHAEV, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17) :4659-4672
[9]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[10]   STATISTICS OF THE ENTANGLEMENT OF POLYMERS - UNENTANGLED LOOPS AND PRIMITIVE PATHS [J].
HELFAND, E ;
PEARSON, DS .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (04) :2054-2059