Chromatin regulation at the frontier of synthetic biology

被引:68
作者
Keung, Albert J. [1 ,2 ,3 ,4 ]
Joung, J. Keith [5 ,6 ,7 ]
Khalil, Ahmad S. [1 ,2 ,8 ]
Collins, James J. [3 ,4 ,8 ,9 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Ctr Synthet Biol, Boston, MA 02215 USA
[3] MIT, Synthet Biol Ctr, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] Massachusetts Gen Hosp, Ctr Canc Res, Mol Pathol Unit, Charlestown, MA 02129 USA
[6] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Charlestown, MA 02129 USA
[7] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[8] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[9] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NUCLEOSOME POSITIONING SEQUENCES; TRANSCRIPTION FACTOR-BINDING; TARGETED DNA METHYLATION; IN-VIVO; SACCHAROMYCES-CEREVISIAE; HISTONE MODIFICATIONS; GENE-REGULATION; BUDDING YEAST; HUMAN-CELLS; NUCLEAR LAMINA;
D O I
10.1038/nrg3900
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 129 条
[1]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[2]   Robustness in bacterial chemotaxis [J].
Alon, U ;
Surette, MG ;
Barkai, N ;
Leibler, S .
NATURE, 1999, 397 (6715) :168-171
[3]   Perinuclear localization of chromatin facilitates transcriptional silencing [J].
Andrulis, ED ;
Neiman, AM ;
Zappulla, DC ;
Sternglanz, R .
NATURE, 1998, 394 (6693) :592-595
[4]   Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae [J].
Aragón-Alcaide, L ;
Strunnikov, AV .
NATURE CELL BIOLOGY, 2000, 2 (11) :812-818
[5]   Nucleosome-Driven Transcription Factor Binding and Gene Regulation [J].
Ballare, Cecilia ;
Castellano, Giancarlo ;
Gaveglia, Laura ;
Althammer, Sonja ;
Gonzalez-Vallinas, Juan ;
Eyras, Eduardo ;
Le Dily, Francois ;
Zaurin, Roser ;
Soronellas, Daniel ;
Vicent, Guillermo P. ;
Beato, Miguel .
MOLECULAR CELL, 2013, 49 (01) :67-79
[6]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[7]   Transcription factor binding predicts histone modifications in human cell lines [J].
Benveniste, Dan ;
Sonntag, Hans-Joachim ;
Sanguinetti, Guido ;
Sproul, Duncan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (37) :13367-13372
[8]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[9]   Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures [J].
Bi, X ;
Yu, Q ;
Sandmeier, JJ ;
Zou, YF .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (05) :2118-2131
[10]   UASrpg can function as a heterochromatin boundary element in yeast [J].
Bi, X ;
Broach, JR .
GENES & DEVELOPMENT, 1999, 13 (09) :1089-1101