Water vapor intrusions into the High Arctic during winter

被引:78
作者
Doyle, J. G. [1 ]
Lesins, G. [1 ]
Thackray, C. P. [1 ]
Perro, C. [1 ]
Nott, G. J. [1 ]
Duck, T. J. [1 ]
Damoah, R. [2 ]
Drummond, J. R. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
[2] Univ Waterloo, Ctr Atmospher Sci, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SURFACE; AMPLIFICATION; BUDGET; OCEAN;
D O I
10.1029/2011GL047493
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80 degrees N, 86 degrees W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m(-2) average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification. Citation: Doyle, J. G., G. Lesins, C. P. Thackray, C. Perro, G. J. Nott, T. J. Duck, R. Damoah, and J. R. Drummond (2011), Water vapor intrusions into the High Arctic during winter, Geophys. Res. Lett., 38, L12806, doi:10.1029/2011GL047493.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Polar amplification of surface warming on an aquaplanet in "ghost forcing" experiments without sea ice feedbacks [J].
Alexeev, VA ;
Langen, PL ;
Bates, JR .
CLIMATE DYNAMICS, 2005, 24 (7-8) :655-666
[2]  
Augustine JA, 2000, B AM METEOROL SOC, V81, P2341, DOI 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO
[3]  
2
[4]   Physical properties of High Arctic tropospheric particles during winter [J].
Bourdages, L. ;
Duck, T. J. ;
Lesins, G. ;
Drummond, J. R. ;
Eloranta, E. W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (18) :6881-6897
[5]   WATER-VAPOR FEEDBACK OVER THE ARCTIC-OCEAN [J].
CURRY, JA ;
SCHRAMM, JL ;
SERREZE, MC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D7) :14223-14229
[6]   Climate Trends at Eureka in the Canadian High Arctic [J].
Lesins, G. ;
Duck, T. J. ;
Drummond, J. R. .
ATMOSPHERE-OCEAN, 2010, 48 (02) :59-80
[7]   Improved retrieval of total water vapor over polar regions from AMSU-B microwave radiometer data [J].
Melsheimer, Christian ;
Heygster, Georg .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2307-2322
[8]  
Ricchiazzi P, 1998, B AM METEOROL SOC, V79, P2101, DOI 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO
[9]  
2
[10]   The arctic amplification debate [J].
Serreze, Mark C. ;
Francis, Jennifer A. .
CLIMATIC CHANGE, 2006, 76 (3-4) :241-264