Thick points for planar Brownian motion and the Erdos-Taylor conjecture on random walk

被引:63
作者
Dembo, A [1 ]
Peres, Y
Rosen, J
Zeitouni, O
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[4] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[5] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[6] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
D O I
10.1007/BF02401841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:239 / 270
页数:32
相关论文
共 20 条
[1]  
[Anonymous], 1987, ENCY MATH APPL
[2]  
[Anonymous], 1985, CAMBRIDGE STUD ADV M
[3]   THE MOST VISITED SITE OF BROWNIAN-MOTION AND SIMPLE RANDOM-WALK [J].
BASS, RF ;
GRIFFIN, PS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :417-436
[4]   Thin points for Brownian motion [J].
Dembo, A ;
Peres, Y ;
Rosen, J ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (06) :749-774
[5]  
Dembo A, 2000, ANN PROBAB, V28, P1
[6]  
Dembo A., 1998, APPL MATH, V38
[7]   EXTENSIONS OF RESULTS OF KOMLOS, MAJOR, AND TUSNADY TO THE MULTIVARIATE CASE [J].
EINMAHL, U .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (01) :20-68
[8]  
Erdos P., 1960, Acta Math. Acad. Sci. Hung, V11, P137, DOI [DOI 10.1007/BF02020631, 10.1007/BF02020631]
[9]  
KAUFMAN R, 1969, CR ACAD SCI A MATH, V268, P727
[10]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131