Cascades on a class of clustered random networks

被引:86
作者
Hackett, Adam [1 ]
Melnik, Sergey [1 ]
Gleeson, James P. [1 ]
机构
[1] Univ Limerick, MACSI, Dept Math & Stat, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
FIELD ISING-MODEL; COMPLEX NETWORKS; DYNAMICS; SPREAD; HYSTERESIS; EPIDEMICS; BEHAVIOR; DISEASE; GRAPHS;
D O I
10.1103/PhysRevE.83.056107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M.E.J. Newman, Phys. Rev. Lett. 103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts' threshold model; in all cases analytical results give excellent agreement with numerical simulations.
引用
收藏
页数:9
相关论文
共 47 条
  • [1] Complex networks - Augmenting the framework for the study of complex systems
    Amaral, LAN
    Ottino, JM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) : 147 - 162
  • [2] Evolutionary dynamics on degree-heterogeneous graphs
    Antal, T.
    Redner, S.
    Sood, V.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (18)
  • [3] Analysis of a stochastic SIR epidemic on a random network incorporating household structure
    Ball, Frank
    Sirl, David
    Trapman, Pieter
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 224 (02) : 53 - 73
  • [4] Bootstrap percolation on complex networks
    Baxter, G. J.
    Dorogovtsev, S. N.
    Goltsev, A. V.
    Mendes, J. F. F.
    [J]. PHYSICAL REVIEW E, 2010, 82 (01)
  • [5] ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES
    BENDER, EA
    CANFIELD, ER
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) : 296 - 307
  • [6] Bollobas B., 1980, Eur. J. Comb., P311, DOI [DOI 10.1016/S0195-6698(80)80030-8, 10.1016/S0195-6698(80)80030-8]
  • [7] EPIDEMICS ON RANDOM GRAPHS WITH TUNABLE CLUSTERING
    Britton, Tom
    Deijfen, Maria
    Lageras, Andreas N.
    Lindholm, Mathias
    [J]. JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 743 - 756
  • [8] BROADBENT SR, 1957, P CAMBRIDGE PHILOS S, V53, P29641
  • [9] Network robustness and fragility: Percolation on random graphs
    Callaway, DS
    Newman, MEJ
    Strogatz, SH
    Watts, DJ
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (25) : 5468 - 5471
  • [10] The Spread of Behavior in an Online Social Network Experiment
    Centola, Damon
    [J]. SCIENCE, 2010, 329 (5996) : 1194 - 1197