The structure of the human AGT protein bound to DNA and its implications for damage detection

被引:80
作者
Duguid, EM
Rice, PA
He, C
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
关键词
DNA repair; human AGT; damage detection;
D O I
10.1016/j.jmb.2005.05.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
O-6-Alklyguanine-DNA alkyltransferase (AGT) is an important DNA repair protein that protects cells from mutagenesis and toxicity arising from alkylating agents. We present an X-ray crystal structure of the wild-type human protein (hAGT) bound to double-stranded DNA with a chemically modified cytosine base. The protein binds at two different sites: one at the modified base, and the other across a sticky-ended DNA junction. The protein molecule that binds the modified cytosine base flips the base and recognizes it in its active site. The one that binds ends of neighboring DNA molecules partially flips an overhanging thymine base. This base is not inserted into the active-site pocket of the protein. These two different hAGT/DNA interactions observed in the structure suggest that hAGT may not detect DNA lesions by searching for the adduct itself, but rather for weakened and/or distorted base-pairs caused by base damage in the duplex DNA. We propose that hAGT imposes a strain on the DNA duplex and searches for DNA regions where the native structure is destabilized. The structure provides implications for pyrimidine recognition, improved inhibitor design, and a possible protein/protein interaction patch on hAGT. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:657 / 666
页数:10
相关论文
共 58 条
[1]   Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA [J].
Banerjee, A ;
Yang, W ;
Karplus, M ;
Verdine, GL .
NATURE, 2005, 434 (7033) :612-618
[2]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[3]   Dynamic opening of DNA during the enzymatic search for a damaged base [J].
Cao, CY ;
Jiang, YL ;
Stivers, JT ;
Song, FH .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (12) :1230-1236
[4]   Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding [J].
Daniels, DS ;
Mol, CD ;
Arvai, AS ;
Kanugula, S ;
Pegg, AE ;
Tainer, JA .
EMBO JOURNAL, 2000, 19 (07) :1719-1730
[5]   DNA binding and nucleotide flipping by the human DNA repair protein AGT [J].
Daniels, DS ;
Woo, TT ;
Luu, KX ;
Noll, DM ;
Clarke, ND ;
Pegg, AE ;
Tainer, JA .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (08) :714-720
[6]   Chemistry of glycosylases and endonucleases involved in base-excision repair [J].
David, SS ;
Wiliams, SD .
CHEMICAL REVIEWS, 1998, 98 (03) :1221-1261
[7]  
DOLAN ME, 1994, CANCER RES, V54, P5123
[8]  
Dolan ME, 1997, CLIN CANCER RES, V3, P837
[9]   How do DNA repair proteins locate potential base lesions?: A chemical crosslinking method to investigate O6-alkylguanine-DNA alkyltransferases [J].
Duguid, EM ;
Mishina, Y ;
He, C .
CHEMISTRY & BIOLOGY, 2003, 10 (09) :827-835
[10]   A phylogenomic study of DNA repair genes, proteins, and processes [J].
Eisen, JA ;
Hanawalt, PC .
MUTATION RESEARCH-DNA REPAIR, 1999, 435 (03) :171-213