Interactions of quinones with thioredoxin reductase -: A challenge to the antioxidant role of the mammalian selenoprotein

被引:121
作者
Cenas, N
Nivinskas, H
Anusevicius, Z
Sarlauskas, J
Lederer, F
Arnér, ESJ
机构
[1] Lithuania Acad Sci, Inst Biochem, LT-2600 Vilnius, Lithuania
[2] CNRS, Lab Enzymol & Biochim Struct, F-91198 Gif Sur Yvette, France
[3] Karolinska Inst, Med Nobel Inst Biochem, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
关键词
D O I
10.1074/jbc.M310292200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(cat)/K-m value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH4) and two-electron reduced (EH2) states in quinone reduction. The redox potential of the EH2/EH4 couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K-i = 6.3 +/- 1 muM). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.
引用
收藏
页码:2583 / 2592
页数:10
相关论文
共 53 条
[1]  
AKINSHOLA BE, 1991, HEPATOLOGY, V13, P509
[2]   DIHYDROLIPOAMIDE-MEDIATED REDOX CYCLING OF QUINONES [J].
ANUSEVICIUS, ZJ ;
CENAS, NK .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 302 (02) :420-424
[3]   Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level [J].
Argyrou, A ;
Sun, GX ;
Palfey, BA ;
Blanchard, JS .
BIOCHEMISTRY, 2003, 42 (07) :2218-2228
[4]  
Arner E. S. J., 2000, CURRENT PROTOCOLS TO
[5]   Physiological functions of thioredoxin and thioredoxin reductase [J].
Arnér, ESJ ;
Holmgren, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (20) :6102-6109
[6]   High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes [J].
Arnér, ESJ ;
Sarioglu, H ;
Lottspeich, F ;
Holmgren, A ;
Böck, A .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (05) :1003-1016
[7]   Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase [J].
Arner, ESJ ;
Nordberg, J ;
Holmgren, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 225 (01) :268-274
[8]   Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis-diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum complex [J].
Arnér, ESJ ;
Nakamura, H ;
Sasada, T ;
Yodoi, J ;
Holmgren, A ;
Spyrou, G .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 (10) :1170-1178
[9]   The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli [J].
Arscott, LD ;
Gromer, S ;
Schirmer, RH ;
Becker, K ;
Williams, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3621-3626
[10]   The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster [J].
Bauer, H ;
Massey, V ;
Arscott, LD ;
Schirmer, RH ;
Ballou, DP ;
Williams, CH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (35) :33020-33028