Calculations of incremental secondary organic aerosol reactivity

被引:12
作者
Carreras-Sospedra, M
Griffin, RJ
Dabdub, D [1 ]
机构
[1] Univ Calif Irvine, Henry Samueli Sch Engn, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[2] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA
[3] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
关键词
D O I
10.1021/es0495359
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The incremental secondary organic aerosol reactivity (ISOAR) of a species j is defined as the relative incremental change in secondary organic aerosol (SOA) formed per relative incremental change in the amount of species j emitted. The California Institute of Technology three-dimensional air quality model is used in conjunction with the Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics to calculate spatially and temporally averaged ISOAR values for the South Coast Air Basin of California (SoCAB). The base case SOA concentrations are derived for September 9, 1993. The South Coast Air Quality Management District of California provided emission and meteorological data. ISOAR values are calculated for the lumped surrogate compounds considered by CAM isoprene, low-yield monoterpenes, high-yield monoterpenes, high-yield aromatics, etc. This work presents basin-wide ISOAR values determined through regression analysis. In addition, ISOAR values are reported at individual locations within the SoCAB. Modeled data are compared with ISOAR values calculated using smog chamber data. Results indicate that long-chain alkanes present the highest ISOAR. On the other hand, short-chain organics present the lowest ISOAR.
引用
收藏
页码:1724 / 1730
页数:7
相关论文
共 29 条
[1]  
BALMES JR, 1995, WESTERN J MED, V163, P372
[2]   Gas-phase terpene oxidation products: a review [J].
Calogirou, A ;
Larsen, BR ;
Kotzias, D .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (09) :1423-1439
[3]  
CARTER WPL, 1994, J AIR WASTE MANAGE, V44, P881
[4]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176
[5]   Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge [J].
Eatough, DJ ;
Long, RW ;
Modey, WK ;
Eatough, NL .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (9-10) :1277-1292
[6]  
Griffin RJ, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000541
[7]  
Griffin RJ, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000544
[8]   A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation [J].
Griffin, RJ ;
Nguyen, K ;
Dabdub, D ;
Seinfeld, JH .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2003, 44 (02) :171-190
[9]   Incremental aerosol reactivity: Application to aromatic and biogenic hydrocarbons [J].
Griffin, RJ ;
Cocker, DR ;
Seinfeld, JH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (14) :2403-2408
[10]   Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons [J].
Griffin, RJ ;
Cocker, DR ;
Seinfeld, JH ;
Dabdub, D .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (17) :2721-2724