Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations

被引:2106
作者
Hou, Tingjun [1 ,2 ]
Wang, Junmei [3 ]
Li, Youyong [1 ,2 ]
Wang, Wei [4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[3] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
PROTEIN-LIGAND INTERACTIONS; EMPIRICAL SCORING FUNCTION; CONTINUUM SOLVENT MODELS; GENERALIZED BORN MODEL; FORCE-FIELD; 3-DIMENSIONAL STRUCTURE; MECHANICAL CALCULATIONS; DIELECTRIC MEDIUM; DRUG-RESISTANCE; ATOMIC CHARGES;
D O I
10.1021/ci100275a
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 66 条
[1]   Binding affinity prediction with different force fields:: Examination of the linear interaction energy method [J].
Almlöf, M ;
Brandsdal, BO ;
Åqvist, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (10) :1242-1254
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   NEW METHOD FOR PREDICTING BINDING-AFFINITY IN COMPUTER-AIDED DRUG DESIGN [J].
AQVIST, J ;
MEDINA, C ;
SAMUELSSON, JE .
PROTEIN ENGINEERING, 1994, 7 (03) :385-391
[4]   Van der Waals radii of elements [J].
Batsanov, SS .
INORGANIC MATERIALS, 2001, 37 (09) :871-885
[5]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[6]   FREE-ENERGY VIA MOLECULAR SIMULATION - APPLICATIONS TO CHEMICAL AND BIOMOLECULAR SYSTEMS [J].
BEVERIDGE, DL ;
DICAPUA, FM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1989, 18 :431-492
[8]   Development and validation of empirical force field parameters for netropsin [J].
Bren, U ;
Hodoscek, M ;
Koller, J .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (06) :1546-1552
[9]   High-throughput calculation of protein-ligand binding affinities: Modification and adaptation of the MM-PBSA protocol to enterprise grid computing [J].
Brown, Scott P. ;
Muchmore, Steven W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (03) :999-1005
[10]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688