Optimal PID control design for synchronization of delayed discrete chaotic systems

被引:27
作者
Hung, Meei-Ling
Lin, Jui-Sheng
Yan, Jun-Juh
Liao, Teh-Lu [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
[2] Shu Te Univ, Dept Comp & Commun, Kaohsiung 824, Taiwan
[3] Far E Univ, Dept Elect Engn, Tainan 744, Taiwan
关键词
Delay control systems - Evolutionary algorithms - Global optimization - Numerical methods - Proportional control systems - Synchronization;
D O I
10.1016/j.chaos.2006.05.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the design of a proportional-integral-derivative (PID) controller for synchronization of delayed discrete chaotic models. The evolutionary programming algorithm (EPA) has been considered as a useful technique for finding global optimization solutions for certain complicated functions in recent years. Therefore, in this paper, we attempt to use the EP algorithm in PID control design for deriving optimal or near optimal PID control gains such that a performance index between the master and slave chaotic systems is minimized. A numerical result exemplifies the synchronization procedure. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:781 / 785
页数:5
相关论文
共 9 条
[1]   A controller for the logistic equations [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2001, 12 (03) :609-611
[2]   A SELF-TUNING CONTROLLER WITH A PID STRUCTURE [J].
CAMERON, F ;
SEBORG, DE .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 38 (02) :401-417
[3]   Eigenvalue optimisation problems via evolutionary programming [J].
Cao, YJ .
ELECTRONICS LETTERS, 1997, 33 (07) :642-643
[4]  
Chien K., 1952, Transactions of the ASME, P175
[5]   On the synchronization of logistic maps [J].
Morgul, O .
PHYSICS LETTERS A, 1998, 247 (06) :391-396
[6]   On the synchronization of delay discrete models [J].
Peng, MS ;
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :573-576
[7]   Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model [J].
Peng, MS .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :489-496
[8]   A nonlinear control scheme to anticipated and complete synchronization in discrete-time chaotic (hyperchaotic) systems [J].
Yan, ZY .
PHYSICS LETTERS A, 2005, 343 (06) :423-431
[9]  
[No title captured]