OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment

被引:109
作者
Park, Jong-Jin [1 ,2 ]
Yi, Jakyung [1 ,2 ]
Yoon, Jinmi [1 ,2 ]
Cho, Lae-Hyeon [1 ,2 ]
Ping, Jin [1 ,2 ]
Jeong, Hee Joong [1 ,2 ]
Cho, Seok Keun [4 ]
Kim, Woo Taek [4 ]
An, Gynheung [1 ,2 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Life Sci, Pohang 790784, South Korea
[2] Kyung Hee Univ, Crop Biotech Inst, Yongin 446701, South Korea
[3] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin 446701, South Korea
[4] Yonsei Univ, Dept Biol, Coll Life Sci & Biotechnol, Seoul 120749, South Korea
关键词
E3; ligase; rice; ROS; seedling lethal; U-box; DNA INSERTIONAL MUTAGENESIS; T-DNA; U-BOX; NEGATIVE REGULATOR; PATTERN-FORMATION; BAX INHIBITOR-1; REPEAT PROTEIN; TAGGING LINES; HEAT-SHOCK; ARABIDOPSIS;
D O I
10.1111/j.1365-313X.2010.04416.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant U-box (PUB) protein functions as an E3 ligase to poly-ubiquitinate a target protein for its degradation or post-translational modification. Here, we report functional roles for OsPUB15, which encodes a cytosolic U-box protein in the class-II PUB family. Self-ubiquitination assays showed that bacterially expressed MBP-OsPUB15 protein has E3 ubiquitin ligase activity. A T-DNA insertional mutation in OsPUB15 caused severe growth retardation and a seedling-lethal phenotype. Mutant seeds did not produce primary roots, and their shoot development was significantly delayed. Transgenic plants expressing the OsPUB15 antisense transcript phenocopied these mutant characters. The abnormal phenotypes were partially rescued by two antioxidants, catechin and ascorbic acid. Germinating seeds in the dark also recovered the rootless defect. Levels of H2O2 and oxidized proteins were higher in the knock-out mutant compared with the wild type. OsPUB15 transcript levels were increased upon H2O2, salt and drought stresses; plants overexpressing the gene grew better than the wild type under high salinity. These results indicate that PUB15 is a regulator that reduces reactive oxygen species (ROS) stress and cell death.
引用
收藏
页码:194 / 205
页数:12
相关论文
共 70 条
[1]   Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo [J].
Amador, V ;
Monte, E ;
García-Martínez, JL ;
Prat, S .
CELL, 2001, 106 (03) :343-354
[2]   NEW CLONING VEHICLES FOR TRANSFORMATION OF HIGHER-PLANTS [J].
AN, G ;
WATSON, BD ;
STACHEL, S ;
GORDON, MP ;
NESTER, EW .
EMBO JOURNAL, 1985, 4 (02) :277-284
[3]   Reverse genetic approaches for functional genomics of rice [J].
An, GH ;
Jeong, DH ;
Jung, KH ;
Lee, S .
PLANT MOLECULAR BIOLOGY, 2005, 59 (01) :111-123
[4]   Molecular genetics using T-DNA in rice [J].
An, GH ;
Lee, S ;
Kim, SH ;
Kim, SR .
PLANT AND CELL PHYSIOLOGY, 2005, 46 (01) :14-22
[5]   Generation and analysis of end sequence database for T-DNA tagging lines in rice [J].
An, SY ;
Park, S ;
Jeong, DH ;
Lee, DY ;
Kang, HG ;
Yu, JH ;
Hur, J ;
Kim, SR ;
Kim, YH ;
Lee, M ;
Han, SK ;
Kim, SJ ;
Yang, JW ;
Kim, E ;
Wi, SJ ;
Chung, HS ;
Hong, JP ;
Choe, V ;
Lee, HK ;
Choi, JH ;
Nam, JM ;
Kim, SR ;
Park, PB ;
Park, KY ;
Kim, WT ;
Choe, S ;
Lee, CB ;
An, GH .
PLANT PHYSIOLOGY, 2003, 133 (04) :2040-2047
[6]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[7]   The STAS domain - a link between anion transporters and antisigma-factor antagonists [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 2000, 10 (02) :R53-R55
[8]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[9]   Plasma Membrane NADH-Oxidoreductase System: A Critical Review of the Structural and Functional Data [J].
Baker, Mark A. ;
Lawen, Alfons .
ANTIOXIDANTS & REDOX SIGNALING, 2000, 2 (02) :197-212
[10]  
BERLETH T, 1993, DEVELOPMENT, V118, P575