Guanine nucleotide exchange factors regulate specificity of downstream signaling from Rac and Cdc42

被引:77
作者
Zhou, KM
Wang, Y
Gorski, JL
Nomura, N
Collard, J
Bokoch, GM [1 ]
机构
[1] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[3] Univ Michigan, Dept Pediat, Ann Arbor, MI 48109 USA
[4] Netherlands Canc Inst, NL-1066 CS Amsterdam, Netherlands
关键词
D O I
10.1074/jbc.273.27.16782
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Rac and Cdc42 GTPases regulate diverse cellular behaviors involving the actin cytoskeleton, gene transcription, and the activity of multiple protein and lipid kinases, All of these pathways can potentially become activated when GTP-Rac or GTP-Cdc42 is formed in response to external cell signals, yet it is evident that each activity must also be able to be controlled individually. The mechanisms by which such specificity of GTPase signaling in response to upstream stimuli is achieved remains unclear, We investigated the action of several well characterized guanine nucleotide exchange factors (GEF(Rho)) to activate Rac- and/or Cdc42-dependent kinase pathways. Coexpression studies in COS-7 cells revealed that the ability of individual guanine nucleotide exchange factors (GEFs) to activate the pal-activated kinase PAK1 could be dissociated from activation of c-Jun amino-terminal kinase, even though activation of both pathways requires the action of the GEFs on Rac and/or Cdc42. In contrast, expression of constitutively active forms of Rac or Cdc42 effectively stimulated both downstream kinases. We conclude that GEFs can be important determinants of downstream signaling specificity for members of the Rho GTPase family.
引用
收藏
页码:16782 / 16786
页数:5
相关论文
共 55 条
[1]   Identification of a putative target for Rho as the serine-threonine kinase protein kinase N [J].
Amano, M ;
Mukai, H ;
Ono, Y ;
Chihara, K ;
Matsui, T ;
Hamajima, Y ;
Okawa, K ;
Iwamatsu, A ;
Kaibuchi, K .
SCIENCE, 1996, 271 (5249) :648-650
[2]   IDENTIFICATION OF A MOUSE P21(CDC42/RAC) ACTIVATED KINASE [J].
BAGRODIA, S ;
TAYLOR, SJ ;
CREASY, CL ;
CHERNOFF, J ;
CERIONE, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22731-22737
[3]  
BAGRODIA S, 1995, J BIOL CHEM, V270, P27995
[4]   The Caenorhabditis elegans gene unc-89, required for muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains [J].
Benian, GM ;
Tinley, TL ;
Tang, XX ;
Borodovsky, M .
JOURNAL OF CELL BIOLOGY, 1996, 132 (05) :835-848
[5]   SUBCELLULAR-LOCALIZATION AND QUANTITATION OF THE MAJOR NEUTROPHIL PERTUSSIS TOXIN SUBSTRATE, GN [J].
BOKOCH, GM ;
BICKFORD, K ;
BOHL, BP .
JOURNAL OF CELL BIOLOGY, 1988, 106 (06) :1927-1936
[6]   Interaction of the Nck adapter protein with p21-activated kinase (PAK1) [J].
Bokoch, GM ;
Wang, Y ;
Bohl, BP ;
Sells, MA ;
Quilliam, LA ;
Knaus, UG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (42) :25746-25749
[7]   Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway [J].
Brown, JL ;
Stowers, L ;
Baer, M ;
Trejo, J ;
Coughlin, S ;
Chant, J .
CURRENT BIOLOGY, 1996, 6 (05) :598-605
[8]   The Dbl family of oncogenes [J].
Cerione, RA ;
Zheng, Y .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (02) :216-222
[9]   THE SMALL GTP-BINDING PROTEINS RAC1 AND CDC42 REGULATE THE ACTIVITY OF THE JNK/SAPK SIGNALING PATHWAY [J].
COSO, OA ;
CHIARIELLO, M ;
YU, JC ;
TERAMOTO, H ;
CRESPO, P ;
XU, NG ;
MIKI, T ;
GUTKIND, JS .
CELL, 1995, 81 (07) :1137-1146
[10]   The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains [J].
Debant, A ;
SerraPages, C ;
Seipel, K ;
OBrien, S ;
Tang, M ;
Park, SH ;
Streuli, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5466-5471