Using relevance feedback in content-based image metasearch

被引:34
作者
Benitez, AB [1 ]
Beigi, M
Chang, SF
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, New Media Technol Ctr, New York, NY 10027 USA
[3] Columbia Univ, Digital Lib Project, New York, NY 10027 USA
[4] IBM Corp, TJ Watson Res Ctr, Armonk, NY 10504 USA
关键词
D O I
10.1109/4236.707692
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
MetaSeek is an image metasearch engine developed to explore me query of large, distributed, online visual information systems. The current implementation integrates user feedback into a performance-ranking mechanism.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 9 条
  • [1] BEIGI M, 1998, S EL IM SCI TECHN ST, V6
  • [2] Visual information retrieval from large distributed online repositories
    Chang, SF
    Smith, JR
    Beigi, M
    Benitez, A
    [J]. COMMUNICATIONS OF THE ACM, 1997, 40 (12) : 63 - 71
  • [3] Experiences with selecting search engines using metasearch
    Dreilinger, D
    Howe, AE
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1997, 15 (03) : 195 - 222
  • [4] Duda R. O., 1997, Pattern Classification, V2nd
  • [5] FLICKNER M, 1995, IEEE COMPUT, V9, P23
  • [6] SMITH JR, 1996, P ACM C MULT
  • [7] S EL IM SCI TECHN ST
  • [8] S EL IM SCI TECHN ST
  • [9] [No title captured]