Activation of K+ channels:: an essential pathway in programmed cell death

被引:215
作者
Remillard, CV [1 ]
Yuan, JXJ [1 ]
机构
[1] Univ Calif San Diego, Med Ctr, Div Pulm & Crit Care Med, Sch Med, San Diego, CA 92103 USA
关键词
apoptosis; ion channels; cell volume regulation; pulmonary artery smooth muscle cells; pulmonary hypertension;
D O I
10.1152/ajplung.00041.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.
引用
收藏
页码:L49 / L67
页数:19
相关论文
共 197 条
[1]   The Bcl-2 protein family: Arbiters of cell survival [J].
Adams, JM ;
Cory, S .
SCIENCE, 1998, 281 (5381) :1322-1326
[2]   Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J].
Adrain, C ;
Creagh, EM ;
Martin, SJ .
EMBO JOURNAL, 2001, 20 (23) :6627-6636
[3]   Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice [J].
Akashi, K ;
Kondo, M ;
vonFreedenJeffry, U ;
Murray, R ;
Weissman, IL .
CELL, 1997, 89 (07) :1033-1041
[4]   CALCIUM-ION CONCENTRATIONS AND DNA FRAGMENTATION IN TARGET-CELL DESTRUCTION BY MURINE CLONED CYTO-TOXIC LYMPHOCYTES-T [J].
ALLBRITTON, NL ;
VERRET, CR ;
WOLLEY, RC ;
EISEN, HN .
JOURNAL OF EXPERIMENTAL MEDICINE, 1988, 167 (02) :514-527
[5]   Inhibition of Bax channel-forming activity by Bcl-2 [J].
Antonsson, B ;
Conti, F ;
Ciavatta, A ;
Montessuit, S ;
Lewis, S ;
Martinou, I ;
Bernasconi, L ;
Bernard, A ;
Mermod, JJ ;
Mazzei, G ;
Maundrell, K ;
Gambale, F ;
Sadoul, R ;
Martinou, JC .
SCIENCE, 1997, 277 (5324) :370-372
[6]   Primary pulmonary hypertension - A vascular biology and translational research "work in progress" [J].
Archer, S ;
Rich, S .
CIRCULATION, 2000, 102 (22) :2781-2791
[7]   Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5 [J].
Archer, SL ;
London, B ;
Hampl, V ;
Wu, XC ;
Nsair, A ;
Puttagunta, L ;
Hashimoto, K ;
Waite, RE ;
Michelakis, ED .
FASEB JOURNAL, 2001, 15 (08) :1801-+
[8]   Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes [J].
Archer, SL ;
Souil, E ;
Dinh-Xuan, AT ;
Schremmer, B ;
Mercier, JC ;
El Yaagoubi, A ;
Nguyen-Huu, L ;
Reeve, HL ;
Hampl, V .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (11) :2319-2330
[9]   Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor [J].
Atkinson, C ;
Stewart, S ;
Upton, PD ;
Machado, R ;
Thomson, JR ;
Trembath, RC ;
Morrell, NW .
CIRCULATION, 2002, 105 (14) :1672-1678
[10]   Mitochondria mediate nitric oxide-induced cell death [J].
Bal-Price, A ;
Borutaite, V ;
Brown, GC .
OXIDATIVE/ENERGY METABOLISM IN NEURODEGENERATIVE DISORDERS, 1999, 893 :376-378