Motives with Galois group of type G2:: an exceptional theta-correspondence

被引:38
作者
Gross, BH [1 ]
Savin, G
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
exceptional theta correspondence; modular forms; motives;
D O I
10.1023/A:1000456731715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an exceptional theta correspondence, obtained by restricting the minimal automorphic representation of the adjoint group of type E-7 and rank 3 over Q to the dual pair G x PGSp(6). Here G is the anisotropic form of G(2) over Q; using the correspondence, we lift certain automorphic forms on G to holomorphic cusp forms on PGSp(6). This Lifting provides the first step in a project to construct motives of rank 7 and weight 0 over Q with Galois group of type G(2).
引用
收藏
页码:153 / 217
页数:65
相关论文
共 52 条
[1]   JORDAN ALGEBRAS AND LIE ALGEBRAS OF TYPE D4 [J].
ALLEN, HP .
JOURNAL OF ALGEBRA, 1967, 5 (02) :250-&
[2]  
Andrianov A. N., 1987, QUADRATIC FORMS HECK
[3]  
[Anonymous], ISRAEL MATH C P
[4]   THE 27-DIMENSIONAL MODULE FOR E6 .1. [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1987, 89 (01) :159-195
[5]  
Bernstein I.N., 1976, RUSS MATH SURV, V31, P1, DOI 10.1070/RM1976v031n03ABEH001532
[6]  
Borel A., 1963, Publ. Math. IHES, V16, P5
[7]  
BOREL A, 1979, P S PURE MATH, V31
[8]  
Bourbaki N., 1968, GROUPS ALGEBRES LIE
[9]  
Carter R. W., 1993, FINITE GROUPS LIE TY
[10]  
CARTIER P, 1979, P S PURE MATH, V33