One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid

被引:146
作者
Shen, Jianfeng [1 ]
Shi, Min [1 ]
Yan, Bo [1 ]
Ma, Hongwei [1 ]
Li, Na [1 ]
Ye, Mingxin [1 ]
机构
[1] Fudan Univ, Ctr Special Mat & Technol, Shanghai 200433, Peoples R China
关键词
METAL NANOPARTICLES; ASSISTED SYNTHESIS; PRODUCE GRAPHENE; VITAMIN-C; REDUCTION; SHEETS; DISPERSIONS; NANOSHEETS; GRAPHITE; DEVICES;
D O I
10.1039/c1jm10671f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A one-pot hydrothermal reaction was used to prepare a reduced graphene oxide sheets (RGO)-silver (Ag) nanoparticles composite using graphite oxide and silver nitrate as starting materials. It was found that graphene oxide could be well reduced under the hydrothermal conditions with ascorbic acid as the reductant, while the Ag nanoparticles were grown on the RGO surface simultaneously. The reduction of graphene oxide and synthesizing of Ag-RGO were confirmed by Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. Microscopy techniques (scanning electron microscopy, atomic force microscopy and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The intensities of the Raman signals of RGO in the composite are greatly increased by the attached Ag nanoparticles, showing surface-enhanced Raman scattering activity. Besides, it was found that the antibacterial activity of free Ag nanoparticles is retained in the composite, suggesting that it can be used as RGO-based biomaterials.
引用
收藏
页码:7795 / 7801
页数:7
相关论文
共 59 条
[1]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[2]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[3]  
[Anonymous], 2010, ANGEW CHEM INT ED, DOI DOI 10.1002/ange.200906291
[4]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[5]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[6]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739
[7]   Liquid-phase exfoliation, functionalization and applications of graphene [J].
Cui, Xu ;
Zhang, Chenzhen ;
Hao, Rui ;
Hou, Yanglong .
NANOSCALE, 2011, 3 (05) :2118-2126
[8]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[9]   Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J].
Fernandez-Merino, M. J. ;
Guardia, L. ;
Paredes, J. I. ;
Villar-Rodil, S. ;
Solis-Fernandez, P. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6426-6432
[10]   Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid [J].
Gao, Jian ;
Liu, Fang ;
Liu, Yiliu ;
Ma, Ning ;
Wang, Zhiqiang ;
Zhang, Xi .
CHEMISTRY OF MATERIALS, 2010, 22 (07) :2213-2218