Atomistic Brownian dynamics simulation of peptide phosphorylation

被引:44
作者
Shen, TY [1 ]
Wong, CF
McCammon, JA
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
10.1021/ja010190t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the implementation of an all-atom Brownian dynamics simulation model of peptides using the constraint algorithm LINCS. The algorithm has been added as a part of UHBD. It uses adaptive time steps to achieve a balance between computational speed and stability. The algorithm was applied to study the effect of phosphorylation on the conformational preference, of the peptide Gly-Ser-Ser-Ser. We find that the middle serine residue experiences considerable conformational change from the C-7eq to the alpha (R) structure upon phosphorylation. NMR (3)J coupling constants were also computed from the Brownian trajectories using the Karplus equation. The calculated (3)J results agree reasonably well with experimental data for phosphorylated peptide but less so for doubly charged phosphorylated one.
引用
收藏
页码:9107 / 9111
页数:5
相关论文
共 32 条
[1]   Algorithms for Brownian dynamics simulation [J].
Branka, AC ;
Heyes, DM .
PHYSICAL REVIEW E, 1998, 58 (02) :2611-2615
[2]   Algorithms for Brownian dynamics computer simulations: Multivariable case [J].
Branka, AC ;
Heyes, DM .
PHYSICAL REVIEW E, 1999, 60 (02) :2381-2387
[3]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[4]   ELECTROSTATICS AND DIFFUSION OF MOLECULES IN SOLUTION - SIMULATIONS WITH THE UNIVERSITY-OF-HOUSTON-BROWNIAN DYNAMICS PROGRAM [J].
DAVIS, ME ;
MADURA, JD ;
LUTY, BA ;
MCCAMMON, JA .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 62 (2-3) :187-197
[5]   Development of a generalized born model parametrization for proteins and nucleic acids [J].
Dominy, BN ;
Brooks, CL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (18) :3765-3773
[6]   BROWNIAN DYNAMICS WITH HYDRODYNAMIC INTERACTIONS [J].
ERMAK, DL ;
MCCAMMON, JA .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1352-1360
[7]   COMPUTER-SIMULATION OF CHARGED-PARTICLES IN SOLUTION .1. TECHNIQUE AND EQUILIBRIUM PROPERTIES [J].
ERMAK, DL .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (10) :4189-4196
[8]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[9]   ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY - A RAPID ACCESS TO ATOMIC CHARGES [J].
GASTEIGER, J ;
MARSILI, M .
TETRAHEDRON, 1980, 36 (22) :3219-3228
[10]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
GREINER, A ;
STRITTMATTER, W ;
HONERKAMP, J .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :95-108