IR and Raman spectra of liquid water: Theory and interpretation

被引:500
作者
Auer, B. M. [1 ]
Skinner, J. L.
机构
[1] Univ Wisconsin, Inst Theoret Chem, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2925258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
IR and Raman (parallel- and perpendicular-polarized) spectra in the OH stretch region for liquid water were measured some years ago, but their interpretation is still controversial. In part, this is because theoretical calculation of such spectra for a neat liquid presents a formidable challenge due to the coupling between vibrational chromophores and the effects of motional narrowing. Recently we proposed an electronic structure/molecular dynamics method for calculating spectra of dilute HOD in liquid D2O, which relied on ab initio calculations on clusters to provide a map from nuclear coordinates of the molecules in the liquid to OH stretch frequencies, transition dipoles, and polarizabilities. Here we extend this approach to the calculation of couplings between chromophores. From the trajectories of the fluctuating local-mode frequencies, transition moments, and couplings, we use our recently developed time-averaging approximation to calculate the line shapes. Our results are in good agreement with experiment for the IR and Raman line shapes, and capture the significant differences among them. Our analysis shows that while the coupling between chromophores is relatively modest, it nevertheless produces delocalization of the vibrational eigenstates over up to 12 chromophores, which has a profound effect on the spectroscopy. In particular, our results demonstrate that the peak in the parallel-polarized Raman spectrum at about 3250 wavenumbers is collective in nature. (c) 2008 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 86 条
[1]   TAMING THE EWALD SUM IN THE COMPUTER-SIMULATION OF CHARGED SYSTEMS [J].
ADAMS, DJ ;
DUBEY, GS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 72 (01) :156-176
[2]   The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis [J].
Ahlborn, H ;
Space, B ;
Moore, PB .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18) :8083-8088
[3]   A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water [J].
Ahlborn, H ;
Ji, XD ;
Space, B ;
Moore, PB .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (23) :10622-10632
[4]  
Allen M. P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[5]   Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O [J].
Auer, B. ;
Kumar, R. ;
Schmidt, J. R. ;
Skinner, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (36) :14215-14220
[6]   Dynamical effects in line shapes for coupled chromophores: Time-averaging approximation [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (10)
[7]   A MOLECULAR-DYNAMICS STUDY OF THE OH STRETCHING VIBRATIONAL-SPECTRUM OF LIQUID WATER [J].
BANSIL, R ;
BERGER, T ;
TOUKAN, K ;
RICCI, MA ;
CHEN, SH .
CHEMICAL PHYSICS LETTERS, 1986, 132 (02) :165-172
[8]   THE OH STRETCHING SPECTRUM OF LIQUID WATER - A RANDOM NETWORK MODEL INTERPRETATION [J].
BELCH, AC ;
RICE, SA .
JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (08) :4817-4823
[9]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[10]   INFRARED INTENSITIES OF LIQUIDS .5. OPTICAL AND DIELECTRIC-CONSTANTS, INTEGRATED-INTENSITIES, AND DIPOLE-MOMENT DERIVATIVES OF H2O AND D2O AT 22-DEGREES-C [J].
BERTIE, JE ;
AHMED, MK ;
EYSEL, HH .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (06) :2210-2218