Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria

被引:91
作者
Kerk, D
Bulgrien, J
Smith, DW
Gribskov, M
机构
[1] Point Loma Nazarene Univ, Dept Biol, San Diego, CA 92106 USA
[2] Univ Calif San Diego, Div Biol, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
关键词
D O I
10.1104/pp.102.016006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We have collected a set of 44 Arabidopsis proteins with similarity to the USPA (universal stress protein A of Escherichia coli) domain of bacteria. The USPA domain is found either in small proteins, or it makes up the N-terminal portion of a larger protein, usually a protein kinase. Phylogenetic tree analysis based upon a multiple sequence alignment of the USPA domains shows that these domains of protein kinases 1.3.1 and 1.3.2 form distinct groups, as do the protein kinases 1.4.1. This indicates that their USPA domain structures have diverged appreciably and suggests that they may subserve distinct cellular functions. Two USPA fold classes have been proposed: one based on Methanococcus jannaschii MJ0577 (1MJH) that binds ATP, and the other based on the Haemophilus influenzae universal stress protein (1JMV), highly similar to E. coli UspA, which does not bind ATP. A set of common residues involved in ATP binding in 1MJH and conserved in similar bacterial sequences is also found in a distinct cluster of Arabidopsis sequences. Threading analysis, which examines aspects of secondary and tertiary structure, confirms this Arabidopsis sequence cluster as highly similar to 1MJH. This structural approach can distinguish between the characteristic fold differences of 1MJH-like and 1JMV-like bacterial proteins and was used to assign the complete set of candidate Arabidopsis proteins to one of these fold classes. It is clear that all the plant sequences have arisen from a 1MJH-like ancestor.
引用
收藏
页码:1209 / 1219
页数:11
相关论文
共 31 条
[1]  
Abeles F. B, 2012, ETHYLENE PLANT BIOL, DOI [10.1016/b978-0-08-091628-6.50001-1, DOI 10.1016/C2009-0-03226-7, 10.1016/C2009-0-03226-7]
[2]  
Alexandrov N. N., 1995, Pacific Symposium on Biocomputing '96, P53
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   The U box is a modified RING finger - a common domain in ubiquitination [J].
Aravind, L ;
Koonin, EV .
CURRENT BIOLOGY, 2000, 10 (04) :R132-R134
[5]   Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA world [J].
Aravind, L ;
Anantharaman, V ;
Koonin, EV .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (01) :1-14
[6]  
BAILEY TL, 1995, MACH LEARN, V21, P51, DOI 10.1007/BF00993379
[7]   Combining evidence using p-values: application to sequence homology searches [J].
Bailey, TL ;
Gribskov, M .
BIOINFORMATICS, 1998, 14 (01) :48-54
[8]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[9]   A flexible motif search technique based on generalized profiles [J].
Bucher, P ;
Karplus, K ;
Moeri, N ;
Hofmann, K .
COMPUTERS & CHEMISTRY, 1996, 20 (01) :3-23
[10]  
Felsenstein J, 1996, METHOD ENZYMOL, V266, P418